Все явления по своей форме содержат некоторое созерцание в пространстве и времени, a priori лежащее в основе их всех. Поэтому они могут быть схвачены, т. е. восприняты в эмпирическое сознание, не иначе как посредством синтеза многообразного, который создает представления об определенном пространстве или времени, т. е. посредством сложения однородного и осознания синтетического единства этого многообразного (однородного). Но осознание многообразного однородного в созерцании вообще, поскольку лишь посредством него становится возможным представление об объекте, есть понятие величины (quanti). Следовательно, даже восприятие объекта как явления возможно лишь посредством того именно синтетического единства многообразного [содержания] данного чувственного созерцания, посредством которого мыслится единство сложения многообразного однородного в понятии
Экстенсивной я называю всякую величину, в которой представление о целом делается возможным благодаря представлению о частях (которое поэтому необходимо предшествует представлению о целом). Я могу себе представить линию, как бы мала она ни была, только проводя ее мысленно, т. е. производя последовательно все [ее] части, начиная с определенной точки, и лишь благодаря этому создавая ее образ в созерцании. То же самое относится и ко всякой, даже малейшей, части времени. Я мыслю в нем лишь последовательный переход от одного мгновения к другому, причем посредством всех частей времени и присоединения их друг к другу возникает наконец определенная величина времени. Так как чистое созерцание во всех явлениях есть или пространство, или время, то всякое явление как созерцание есть экстенсивная величина, ибо оно может быть познано только посредством последовательного синтеза (от части к части) в схватывании. Уже поэтому все явления созерцаются как агрегаты (множества заранее данных частей), что, однако, имеет место не для всякого рода величин, а только для тех, которые представляются и схватываются нами как
На этом последовательном синтезе продуктивного воображения при создании фигур основывается математика протяженности (геометрия) с ее аксиомами, a priori выражающими условия чувственного созерцания, при которых только и может осуществляться схема чистого понятия внешнего явления; [таковы], например, [условия], что между двумя точками возможна только одна прямая линия, что две прямые линии не замыкают пространства, и т. п. Это аксиомы, имеющие отношение, собственно, только к величинам (quanta) как таковым.
Что же касается количества (quantitas), т. е. ответа на вопрос, как велико что-то, то для этого нет аксиом в точном смысле слова, хотя некоторые из положений этого рода имеют синтетический характер и достоверны непосредственно (modemonstrabilia). В самом деле, положения, согласно которым одинаковые величины, прибавленные к равным величинам или вычтенные из них, дают одинаковые величины, суть аналитические положения, так как я в них непосредственно сознаю тождество создания одного количества с созданием другого, между тем как аксиомы должны быть априорными синтетическими положениями. Очевидные же положения об отношении между числами имеют, правда, синтетический характер, но не общий, как положения геометрии, и именно поэтому их нельзя считать аксиомами, их могут назвать числовыми формулами. Положение 7 + 5 = 12 не аналитическое, так как ни в представлении о 7, ни в представлении о 5, ни в представлении о сложении обоих чисел не мыслится число 12 (то, что