Читаем Краткий курс логики полностью

Для того чтобы определить, к какому виду относится та или иная формула, и, соответственно, оценить логическую верность какого-то рассуждения, обычно составляют специальную таблицу истинности для этой формулы. Рассмотрим следующее рассуждение: «Владимир Владимирович Маяковский родился в 1891 г. или в 1893 г. Однако известно, что он родился не в 1891 г. Следовательно, он родился в 1893 г.». Формализуя это рассуждение, выделим входящие в него простые высказывания: «Владимир Владимирович Маяковский родился в 1891 г.». «Владимир Владимирович Маяковский родился в 1893 г.». Первая часть нашего рассуждения, несомненно, представляет собой строгую дизъюнкцию этих двух простых высказываний: ab. Далее к дизъюнкции присоединяется отрицание первого простого высказывания, и получается конъюнкция: (ab) ∧ ¬ a. И, наконец, из этой конъюнкции вытекает утверждение второго простого суждения, и получается импликация: ((ab) ∧ ¬ a) → b, которая и является результатом формализации данного рассуждения. Теперь надо составить табл. 7 истинности для получившейся формулы:

Количество строк в таблице определяется по правилу: 2n, где n – число переменных (простых высказываний) в формуле. Поскольку в нашей формуле только две переменных, то в таблице должно быть четыре строки. Количество колонок в таблице равно сумме числа переменных и числа логических союзов, входящих в формулу. В рассматриваемой формуле две переменных и четыре логических союза (∨, ∧, ¬, →), значит, в таблице должно быть шесть колонок. Первые две колонки представляют собой все возможные наборы истинностных значений переменных (таких наборов всего четыре: обе переменные истинны; первая переменная истинна, а вторая ложна; первая переменная ложна, а вторая истинна; обе переменные ложны). Третья колонка – это истинностные значения строгой дизъюнкции, которые она принимает в зависимости от всех (четырёх) наборов истинностных значений переменных. Четвёртая колонка – это истинностные значения отрицания первого простого высказывания: ¬ a. Пятая колонка – это истинностные значения конъюнкции, состоящей из вышеуказанной строгой дизъюнкции и отрицания, и, наконец, шестая колонка – это истинностные значения всей формулы, или импликации. Мы разбили всю формулу на составные части, каждая из которых является двучленным сложным суждением, т. е. состоящим из двух элементов (в предыдущем параграфе говорилось о том, что отрицание также представляет собой двучленное сложное суждение):

В четырёх последних колонках таблицы представлены истинностные значения каждого из этих двучленных сложных суждений, образующих формулу. Сначала заполним третью колонку таблицы. Для этого нам надо вернуться к предыдущему параграфу, где была представлена таблица истинности сложных суждений (см. табл. 6), которая в данном случае будет для нас базисной (как таблица умножения в математике). В этой таблице мы видим, что строгая дизъюнкция ложна, когда обе её части истинны или обе ложны; когда же одна её часть истинна, а другая ложна, тогда строгая дизъюнкция истинна. Поэтому значения строгой дизъюнкции в заполняемой таблице (сверху вниз) таковы: «ложно», «истинно», «истинно», «ложно». Далее заполним четвёртую колонку таблицы: ¬ а: когда утверждение два раза истинно и два раза ложно, тогда отрицание ¬ а, наоборот, два раза ложно и два раза истинно. Пятая колонка – это конъюнкция. Зная истинностные значения строгой дизъюнкции и отрицания, мы можем установить истинностные значения конъюнкции, которая истинна только тогда, когда истинны все входящие в неё элементы. Строгая дизъюнкция и отрицание, образующие данную конъюнкцию, одновременно истинны только в одном случае, следовательно конъюнкция один раз принимает значение «истинно», а в остальных случаях – «ложно». Наконец, надо заполнить последнюю колонку: для импликации, которая и будет представлять истинностные значения всей формулы. Возвращаясь к базисной таблице истинности сложных суждений, вспомним, что импликация ложна только в одном случае: когда её основание истинно, а следствие ложно. Основанием нашей импликации является конъюнкция, представленная в пятой колонке таблицы, а следствием простое суждение (b), представленное во второй колонке. Некоторое неудобство в данном случае заключено в том, что слева направо следствие идёт раньше основания, однако мы всегда можем мысленно поменять их местами. В первом случае (первая строчка таблицы, не считая «шапки») основание импликации ложно, а следствие истинно, значит, импликация истинна. Во втором случае и основание, и следствие ложны, значит, импликация истинна. В третьем случае и основание, и следствие истинны, значит, импликация истинна. В четвёртом случае, как и во втором, и основание, и следствие ложны, значит, импликация истинна.

Перейти на страницу:

Похожие книги

Агрессия
Агрессия

Конрад Лоренц (1903-1989) — выдающийся австрийский учёный, лауреат Нобелевской премии, один из основоположников этологии, науки о поведении животных.В данной книге автор прослеживает очень интересные аналогии в поведении различных видов позвоночных и вида Homo sapiens, именно поэтому книга публикуется в серии «Библиотека зарубежной психологии».Утверждая, что агрессивность является врождённым, инстинктивно обусловленным свойством всех высших животных — и доказывая это на множестве убедительных примеров, — автор подводит к выводу;«Есть веские основания считать внутривидовую агрессию наиболее серьёзной опасностью, какая грозит человечеству в современных условиях культурноисторического и технического развития.»На русском языке публиковались книги К. Лоренца: «Кольцо царя Соломона», «Человек находит друга», «Год серого гуся».

Вячеслав Владимирович Шалыгин , Конрад Захариас Лоренц , Конрад Лоренц , Маргарита Епатко

Фантастика / Самиздат, сетевая литература / Научная литература / Ужасы и мистика / Прочая научная литература / Образование и наука / Ужасы
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука