Читаем Краткая история химии. Развитие идей и представлений в химии полностью

Не составил исключения и кислород. В 1929 г. американскому химику Уильямсу Фрэнсису Джиоку (род. в 1895 г.) удалось показать, что кислород имеет три изотопа. Наиболее распространен кислород-16, на его долю приходится около 99.8% всех атомов. В ядре кислорода-16 8 протонов и 8 нейтронов. В ядре кислорода-18, второго по распространенности изотопа, 8 протонов и 10 нейтронов, в ядре кислорода-17, который обнаружен лишь в следовых количествах, 8 протонов и 9 нейтронов.

Это создало проблему. Еще со времен Берцелиуса атомные массы элементов рассчитывались при допущении, что атомная масса кислорода равна 16.0000 (см. гл. 5). Но атомная масса кислорода могла быть только рассчитанной средней атомной массой трех изотопов, а соотношение изотопов кислорода могло от образца к образцу сильно меняться.

Физики начали определять атомные массы исходя из атомной массы кислорода-16, равной 16.0000. В результате был получен ряд величин (физическая атомная масса), которые на очень небольшую постоянную величину превышали те величины, которыми пользовались и которые постепенно уточняли на протяжении всего XIX в. (химические атомные веса).

В 1961 г. международные организации как химиков, так и физиков согласились принять за стандарт атомную массу углерода-12, приняв ее равной точно 12.0000. Атомные массы элементов, рассчитанные с учетом нового стандарта, почти точно совпадают со старыми химическими атомными весами, и, кроме того, новый стандарт связан только с одним изотопом, а не плеядой изотопов.

<p>Глава 14</p><p>Ядерные реакции</p><p>Новые превращения</p>

После того как стало очевидно, что атом состоит из более мелких частиц, которые произвольно перегруппировываются при радиоактивных преобразованиях, следующий шаг казался почти предопределенным.

Человек научился с помощью обычных химических реакций по своему усмотрению перестраивать молекулы. Почему бы не попытаться перестраивать ядра атомов, используя ядерные реакции? Протоны и нейтроны связаны гораздо прочнее, чем атомы в молекуле, и обычные методы, используемые для проведения обычных химических реакций, естественно, к успеху не приведут. Но ведь можно попытаться разработать новые методы.

Первый шаг в этом направлении был сделан Резерфордом [129]; он бомбардировал различные газы альфа-частицами и обнаружил, что каждый раз, когда альфа-частица ударяет в ядро атома, она нарушает его структуру (рис. 23).

В 1919 г. Резерфорд уже смог показать, что альфа-частицы могут выбивать протоны из ядер азота и объединяться с тем, что останется от ядра. Наиболее распространенным изотопом азота является азот-14, в ядре которого содержится 7 протонов и 7 нейтронов. Если из этого ядра выбить протон и добавить 2 протона и 2 нейтрона альфа-частицы, то получится ядро с 8 протонами и 9 нейтронами, т. е. ядро кислорода-17. Альфа-частицу можно рассматривать как гелий-4, а протон — как водород-1. Таким образом, Резерфорд первым успешно провел искусственную ядерную реакцию:

Азот-14 + гелий-4 → кислород-17 + водород-1

Преобразовав один элемент в другой, он осуществил трансмутацию. Так, в XX в. осуществилась самая заветная мечта алхимиков.

В последующие пять лет Резерфорд провел серию других ядерных реакций с использованием альфа-частиц. Однако возможности его были ограничены, поскольку радиоактивные элементы давали альфа-частицы только со средней энергией. Необходимы были частицы с гораздо большими энергиями.

Рис. 23. Схема опыта Резерфорда. Испускаемые альфа-частицы отклоняются при прохождении через золотую фольгу; величина отклонения фиксируется при соударении частиц с флуоресцентным экраном.

Физики принялись за создание устройств, предназначенных для ускорения заряженных частиц в электрическом поле. Заставив частицы двигаться с ускорением, можно было повысить их энергию. Английский физик Джон Дуглас Кокрофт (1897—1967) совместно со своим сотрудником ирландским физиком Эрнестом Томасом Синтоном Уолтоном (род. в 1903 г.) первыми разработали идею ускорителя, позволявшего получать частицы с энергией, достаточной для осуществления ядерной реакции. В 1929 г. такой ускоритель был построен. Спустя три года эти же физики бомбардировали атомы лития ускоренными протонами и получили альфа-частицы. Эту ядерную реакцию можно записать следующим образом:

Водород-1 + литий-7 → гелий-4 + гелий-4

В ускорителе Кокрофта — Уолтона и ряде других подобных ускорителей частицы перемещались по прямолинейной траектории. Получить в таком ускорителе частицы с высокой энергией можно было только при достаточной длине пути частиц, поэтому ускорители такого типа были чрезвычайно громоздки. В 1930 г. американский физик Эрнест Орландо Лоуренс (1901—1958) предложил ускоритель, в котором частицы двигались по слабо расходящейся спирали. Этот относительно небольшой циклотрон мог давать частицы с крайне высокой энергией.

Перейти на страницу:

Похожие книги

Алхимия
Алхимия

Основой настоящего издания является переработанное воспроизведение книги Вадима Рабиновича «Алхимия как феномен средневековой культуры», вышедшей в издательстве «Наука» в 1979 году. Ее замысел — реконструировать образ средневековой алхимии в ее еретическом, взрывном противостоянии каноническому средневековью. Разнородный характер этого удивительного явления обязывает исследовать его во всех связях с иными сферами интеллектуальной жизни эпохи. При этом неизбежно проступают черты радикальных исторических преобразований средневековой культуры в ее алхимическом фокусе на пути к культуре Нового времени — науке, искусству, литературе. Книга не устарела и по сей день. В данном издании она существенно обновлена и заново проиллюстрирована. В ней появились новые разделы: «Сыны доктрины» — продолжение алхимических штудий автора и «Под знаком Уробороса» — цензурная история первого издания.Предназначается всем, кого интересует история гуманитарной мысли.

Вадим Львович Рабинович

Культурология / История / Химия / Образование и наука