Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Я рассказал о гиперболе в последнюю очередь, хотя это именно то коническое сечение, с которым мы уже встречались. Когда две величины обратно пропорциональны друг другу, как было с частотностью употребления слов в романе Джеймса Джойса «Улисс» и их порядковым номером в списке, их математическую зависимость можно представить в таком виде: , где k — это константа. Данное уравнение описывает гиперболу, в которой в качестве асимптот выступают горизонтальная и вертикальная оси. Многие законы природы включают в себя обратно пропорциональные величины — например закон Бойля — Мариотта, который гласит, что давление газа обратно пропорционально его объему. Следовательно, гиперболы широко распространены в науке. Даже такой общеизвестный статистический термин, как «длинный хвост», используется во многих случаях как эвфемизм для замещения гиперболы и ее асимптоты.

Кривая— это гипербола

Мы начали эту главу с определения конических сечений как фигур, образующихся в результате рассечения конуса секущей плоскостью, а затем проанализировали свойства каждой фигуры в отдельности. А завершим последним, всеобъемлющим определением: конические сечения — это кривые, для которых отношение расстояний до точки (фокуса) и до прямой (директрисы) представляет собой постоянную величину. Если отношение расстояния от кривой до точки к расстоянию от кривой до прямой линии больше 1 (а это значит, что кривая всегда пропорционально ближе к директрисе, чем к фокусу), мы имеем гиперболу, как показано на рисунке ниже. Когда это соотношение равно 1 — параболу, а когда оно меньше 1 — речь идет об эллипсе. Данные соотношения известны как эксцентриситеты каждой кривой, поскольку они показывают степень их отклонения от окружности. На представленном ниже рисунке изображены три кривые с общим фокусом F и общей директрисой. Эксцентриситет эллипса составляет 0,75, гиперболы — 1,25.

Гипербола A1/A2=k> 1

Парабола B1/B2= 1

Эллипс C1/C2=k< 1

Окружность Эксцентриситет=0

Конические сечения: семейство эксцентриков

А теперь представьте, что вы — астроном, а размещенный выше рисунок — модель Солнечной системы. Пусть F — это Солнце. Конические сечения с фокусом в точке F и есть совокупность всех возможных орбит небесных тел.

Планеты вращаются вокруг Солнца по эллипсам: у орбиты Земли эксцентриситет 0,0167, что очень близко к окружности. Чем быстрее объект перемещается по своей орбите, тем больше ее эксцентриситет. Например, орбитальная скорость кометы Галлея в два раза больше орбитальной скорости Земли. Орбита кометы напоминает доску для серфинга, на одном конце которой находится Солнце; именно поэтому на протяжении всех 75 лет, требующихся комете Галлея для прохождения орбиты, она находится слишком далеко, чтобы увидеть ее невооруженным глазом. Эксцентриситет орбиты кометы Галлея — 0,967, что близко к параболе. Когда эксцентриситет орбиты кометы равен 1, она представляет собой параболу, а это значит, что комета пройдет рядом с Солнцем только один раз за время своего существования, после чего покинет Солнечную систему навсегда. Если эксцентриситет орбиты кометы больше 1, эта орбита является гиперболой. Однако такие кометы — крайне редкие явления, а орбитальная скорость тех, которые обнаружены, незначительно превышает скорость, необходимую для того, чтобы отклониться от эллиптической орбиты. Комета C/1980 E1, замеченная в 1980 году, перемещается по орбите с эксцентриситетом 1,057 — это самый большой эксцентриситет из всех когда-либо зарегистрированных.

Перейти на страницу:

Похожие книги