Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Браге был эпатажным аристократом. Он носил протез носа из сплава золота и серебра, после того как кузен отсек нос ему во время дуэли, состоявшейся из-за одной математической формулы. Кроме того, у Браге был домашний лось, который упал замертво, выпив слишком много пива за ужином. Однако этот датчанин гораздо бережнее обращался со своими астрономическими данными — самыми точными и полными на то время, о чем знала вся Европа. Тихо Браге поручил Кеплеру разобраться с орбитой Марса — планеты, путь которой больше всего отклонялся от круговой орбиты. Это была изнурительная, кропотливая работа, требующая построения возможных орбит, расчета прогнозируемых позиций и проверки данных наблюдения. «Если этот утомительный метод внушает вам отвращение, — объяснял Кеплер впоследствии, — он должен внушить вам и сострадание ко мне, поскольку я проделал это не менее семидесяти раз».

В период «боев с Марсом» Кеплер сделал перерыв, во время которого изобрел современную оптику. В книге The Optical Part of Astronomy («Оптика в астрономии») есть раздел о зеркалах, сделанных в форме конических сечений: эллипса, параболы и гиперболы. В действительности именно в этом труде Кеплер ввел слово «фокус», означавшее точку пересечения отраженных лучей света. Когда Кеплер вернулся к Марсу, его так вывела из себя неспособность найти систему круговых движений, которая согласовывалась бы с данными наблюдения, что в конце концов он решил отказаться от теории эпициклов. Новое направление исследований вряд ли внушало Кеплеру оптимизм. «Я очистил авгиевы конюшни астрономии от окружностей и спиралей, — сетовал он, — и остался с одной телегой навоза». На протяжении года Кеплер экспериментировал с яйцевидной орбитой — овалом, сплюснутым у одного края и более острым у другого, хотя сам ученый испытывал отвращение к такой форме орбиты и не считал ее ни симметричной, ни гармоничной. Для того чтобы аппроксимировать этот овал в своих вычислениях, он использовал эллипс — геометрическую фигуру, которую знал по работе с применением конических сечений в оптике. И тут его осенило: эта фигура с ее свойствами сама может все объяснить. «O me ridiculum! Каким же глупцом я был! — воскликнул Кеплер. — Идеальный эллипс — это единственно возможная форма орбиты планет».

Поначалу Кеплер отбрасывал идею об эллиптической орбите Марса, потому что считал ее слишком простой для того, чтобы ее не заметили другие ученые. Кроме того, он знал, что у эллипса два фокуса, а это противоречило теории об уникальности Солнца, предполагающей, что оно должно быть в центре системы, а не в одной из одинаково важных точек. Однако затем Кеплер понял, что, несмотря на кажущееся противоречие, Солнце действительно находится в одном из фокусов и что именно его влияние определяет скорость движения планеты по орбите. (В другом фокусе нет ничего.) Чем ближе планета к Солнцу, тем быстрее она движется по эллиптической орбите, но охватывает при этом равную площадь за равные промежутки времени, как показано на рисунке ниже. Философ Норвуд Рассел Хэнсон писал, что величайшее достижение Кеплера было самым смелым актом воображения за всю историю науки[81]. «Даже концептуальные потрясения [двадцатого столетия] не требовали такого разрыва с прошлым». Модель эпициклов Аполлония была в конце концов вытеснена эллипсом — кривой, которой Великий Геометр сам дал имя и свойства которой знал лучше, чем кто-либо другой.

Для того чтобы добраться из точки A в точку B, требуется столько же времени, сколько из точки C в точку D, поскольку заштрихованные сегменты имеют одинаковую площадь. Следовательно, по мере отдаления от Солнца планета движется медленнее

В 1610 году Кеплер получил послание от Галилео Галилея, выдающегося астронома, жившего за Альпами, в Италии. Оно гласило:

smaismrmilmepoetalevmibunenugttaviras

Новость Галилея была слишком захватывающей, чтобы держать ее в себе, но и слишком ценной, чтобы рассказывать о ней всем подряд, тем самым помогая кому-то в его научных изысканиях. Поэтому ученый написал ее в виде анаграммы, что устанавливало приоритетность открытия, а также позволяло сохранить детали в тайне и избежать чрезмерной ответственности в случае, если он окажется неправ.

Перейти на страницу:

Похожие книги