Говорят, что «Начала» Евклида переиздавались на протяжении большего периода и в большем количестве экземпляров, чем любая другая книга, за исключением Библии. Это очень уместное сравнение, поскольку более двух тысячелетий труд Евклида считался священным текстом, а аксиоматический метод принимался в качестве догмы. Однако в XVII веке появились первые признаки «нечестивости». Евклид полагался на аксиомы и определения, которые по самой своей сути не требовали доказательств и, разумеется, не содержали внутренних противоречий. Но, как мы видели в предыдущей главе, бесконечно малой величине, или величине, которая представляет собой одновременно и нечто, и ничто, свойственна именно такая внутренняя противоречивость. Ньютон и его современники использовали концепцию бесконечно малых величин, поскольку она позволила им доказать множество новых теорем, хотя им и приходилось закрывать глаза на противоречие с догматами Евклида, которые это за собой влекло.
Однако со временем математики поняли: для того чтобы исчисление было свободно от внутренних противоречий, оно должно опираться на более прочный фундамент. Было решено положить в основу исчисления не бесконечно малые величины, а нечто более надежное — концепцию предела. После упрощения исходных предположений и уточнения определений родился новый раздел математики — математический анализ. Сейчас этим термином обозначаются все области, связанные с исчислением, непрерывностью и бесконечными процессами. Одним из первых знаковых достижений математического анализа стала теорема о промежуточном значении, о которой шла речь в начале главы, гласящая, что непрерывная кривая покрывает все точки, расположенные между ее минимумом и максимумом.
Присущая XIX столетию склонность к научной строгости нашла свое отражение не только в математическом анализе, но и в других областях, в частности в евклидовой геометрии. Внимательно проанализировав «Начала», немецкий математик Мориц Паш сделал невероятное открытие: в рассуждениях Евклида есть прорехи, которые до сих пор никто не заметил, несмотря на то что «Начала» — наиболее изученный учебник по математике за всю историю. Евклид считал само собой разумеющимся, что, если три разные точки лежат на одной прямой, значит, одна из них находится между двумя другими. Однако если бы Евклид придерживался собственных стандартов, ему следовало бы сформулировать это утверждение в виде аксиомы. Евклид совершил неосмотрительную ошибку, позволив своим глазам воздействовать на дедуктивный процесс. В 1899 году Давид Гильберт предложил новую, усовершенствованную евклидову систему, содержащую 21 постулат.
Числа тоже были тщательно проанализированы по-новому. Числа — это ядро всей математики, по сути — всей науки. Но что такое число и почему 1 + 1 = 2?
В 1879 году немецкий математик Готлоб Фреге опубликовал свой труд Begriffsschrift («Исчисление понятий»), в котором представил тщательно проработанную, имеющую собственные обозначения систему исчисления, позволяющую определить истинность и ложность утверждений. Это было рождение математической логики — использования математических рассуждений для анализа других математических рассуждений.
Фреге хотел дать четкий ответ на вопрос «Что такое число?». Для решения этой задачи он позаимствовал у своего современника Георга Кантора концепцию множества. В математике часто бывает так, что на первый взгляд простое слово означает нечто сложное. Но только не в случае с множеством. Множество — это всего лишь совокупность объектов, обладающих одним и тем же свойством. Множеством может быть ящик яблок, пелотон (лидирующая группа) велосипедистов или звездная галактика.
Фреге разработал систему, в которой числа определяются как множества, аксиомы записываются с использованием его системы исчисления понятий, а истинность арифметических законов может быть доказана. Он планировал свести арифметику к системе не допускающих двойного толкования логических операций, в основу которой положены исходные предположения, лишенные внутренних противоречий, — например «отрицание отрицания утверждения А означает утверждение А»[162]. Работа с такими концепциями, как числа и сложение, не вызывает никаких трудностей, поэтому вы можете подумать, что задача Фреге была не особо сложной. Но на самом деле она потребовала огромных умственных усилий. В отличие от всех своих предшественников, использовавших числа и арифметические операции в качестве кирпичей для строительства здания математики, Фреге сделал подкоп непосредственно под ее фундамент.