Значение концепции числа, используемой поначалу для подсчета физических объектов, было расширено посредством введения понятия отрицательных, а затем и мнимых чисел. В связи с этим возник закономерный вопрос о том, создаст ли алгебра еще более абстрактную категорию чисел. Например, что представляет собой квадратный корень квадратного корня из минус единицы? Если всерьез задуматься об этой концепции, сперва она перевернет ваш разум вверх дном, а затем вывернет наизнанку. Речь идет о решении уравнения:
или:
что эквивалентно:
Поражает тот факт, что решение этого уравнения представляет собой комплексное число[130][131]:
В XVIII веке математики поняли, что применение мнимых чисел позволяет решить любое уравнение. Это вывод оказался настолько важным, что его стали позиционировать как основную теорему алгебры. Уравнение, записанное с помощью комплексных чисел, всегда имеет решение в виде комплексных чисел. Дверь, в которую вошел Рафаэль Бомбелли, для того чтобы изучить квадратные корни отрицательных чисел, оказалась дверью в изолированную комнату. Но что это была за комната! Болезненные чувства, испытываемые математиками по отношению к мнимым числам, уступили место радости. В настоящее время концепция числа
Мнимые числа — главные герои двух самых известных примеров математической красоты. Один из них — картина (о которой мы поговорим немного позже), а другой — уравнение, известное как тождество Эйлера. В 2003 году, во время атаки экотеррористов на автосалон в Лос-Анджелесе, эту формулу нанесли спреем на бок внедорожника. Характер данного рисунка привел к аресту студента, изучавшего физику в Калифорнийском технологическом институте[132]. «Все должны знать тождество Эйлера», — объяснил он судье. Безусловно, студент был совершенно прав, но от разрисовывания автомобилей все же следует воздержаться. Тождество Эйлера — это «быть или не быть» математики, самая знаменитая формула и фрагмент культурного наследия, находящий отклик и за пределами своей области:
Это поразительное равенство. Оно объединяет пять самых важных чисел в математике: 1 — первое натуральное число; 0 — абстрактное представление понятия «ничего»; π — отношение длины окружности к диаметру;
Но что же все-таки значит то, что у действительного числа (числа
Единственное, что вам понадобится в качестве подготовки, — принять без доказательства три следующих уравнения. Многоточия в конце означают, что правая сторона уравнения продолжается до бесконечности:
Если