Леонард Эйлер раскрыл еще одну связь между этими двумя константами, даже более неожиданную и поразительную, чем формула Стирлинга. Но, прежде чем переходить к данной теме, нам необходимо познакомиться с очередной гласной, которую Эйлер ввел в наш математический алфавит.
Приготовьтесь к встрече с числом
7. Позитивная сила негативного мышления
Автор отправляется в путешествие по другую сторону ноля. Он должен объяснить, почему минус, умноженный на минус, дает плюс. Ему не удается сохранить связь с реальностью, и он погружается в Долину морского конька
Зимой 2007 года Национальная лотерея Великобритании ввела новые билеты. На них размещалось два числа, и люди выигрывали приз, если число слева оказывалось больше числа справа. Вы можете подумать, что все это предельно просто. Однако, поскольку эти билеты были оформлены в зимнем стиле, числа представляли собой температуру ниже нуля. Задача, таким образом, сводилась к сравнению
Проще всего посмеяться над людьми, не понимающими основ арифметики, однако не стоит с этим спешить. Отрицательные числа мучили наш разум столетиями и делают это до сих пор. Именно поэтому подземные этажи зданий принято обозначать буквами (например, LG — lower ground («подземный этаж») и B — basement («подвальный этаж»)) или алфавитно-цифровыми знаками (скажем, B1, B2 и B3), а не отрицательными числами (–1, –2 и –3). Когда мы датируем события, произошедшие до рождения Христа, например, когда Евклид написал свой труд Elements[121], мы предпочитаем говорить «в 300 году до нашей эры», а не «в –300 году нашей эры». А у бухгалтеров вообще множество способов избегать знака «минус»: записывать долги красным, прибавлять аббревиатуру DR (от debtor — «должник») или заключать неприятную сумму в скобки.
Ни древнегреческие, ни египетские, ни вавилонские математики не создали концепцию отрицательных чисел. В древние времена числа использовались для подсчета и измерения, а как можно подсчитать или измерить то, что меньше, чем ничего? Давайте попытаемся встать на место обитателей античного мира, чтобы понять, какой интеллектуальный прорыв им нужно было совершить. Мы знаем, что 2 + 3 = 5, потому что, когда у нас есть две буханки хлеба и нам дают еще три, у нас будет пять буханок. Мы знаем, что 2 − 1 = 1, потому что, когда, имея две буханки хлеба, мы отдаем одну, у нас остается еще одна. Но что значит 2 − 3? Если у меня есть только две буханки хлеба, я не могу отдать три. Однако предположим, что я все же могу это сделать — тогда у меня останется минус одна буханка. Что же значит «минус одна буханка»? Это не обычная буханка хлеба. Это, скорее, ее отсутствие, причем такое, что если к нему прибавить буханку хлеба, то будет получено «ничто». Неудивительно, что древние считали эту концепцию абсурдной.
Однако в древней Азии допускали существование отрицательных величин — правда, в определенной степени[122]. Ко временам Евклида у китайцев уже была система вычислений, в которой использовались бамбуковые палочки. Обычные палочки представляли положительные числа, их китайцы называли «истинными», а палочки, покрашенные в черный цвет, олицетворяли отрицательные числа, их называли «ложными». Как показано ниже, китайцы размещали палочки на разграфленной доске таким образом, чтобы каждое число занимало отдельную ячейку, а каждая колонка соответствовала одному уравнению. Опытный вычислитель решал уравнения, передвигая бамбуковые палочки. Если решение состояло из обычных палочек, это было истинное число, которое принималось. Если решение состояло из черных палочек, это было ложное число, и оно отбрасывалось. Тот факт, что китайцы использовали физические объекты для представления отрицательных величин, свидетельствовал о существовании этих чисел, хотя они и были всего лишь инструментами для вычисления положительных величин. Китайцы поняли одну очень важную истину: если математические объекты приносят пользу, не имеет значения, что они не согласуются с повседневным опытом. Пусть этой проблемой занимаются философы.