Читаем Красота в квадрате Как цифры отражают жизнь и жизнь отражает цифры полностью

В это трудно поверить, но и здесь прослеживается та же закономерность. В Нью-Йорке (самом крупном городе США) численность населения в десять раз больше, чем в Кливленде (десятом по величине городе), и в сто раз больше, чем в Гамильтоне (сотом по величине городе). Никто не предлагал американцам расселяться с такой точностью. Тем не менее их выбор подчинялся строгой закономерности. Это происходит и сейчас. На самом деле все мы поступаем именно так. На представленных ниже графиках в двойном логарифмическом масштабе отображены данные о численности населения американских городов и их ранге (порядковом номере), взятые из отчетов о переписи населения США 2000 года, а также данные о численности населения крупнейших городов мира.

Распределение численности населения крупнейших городов США в 2000 году (график сверху) и крупнейших городов мира в 2013 году (график снизу)

Все точки стремятся к прямой линии, как послушные муравьи. Это означает, что здесь, как и прежде, применимо все то же общее уравнение:

На этот раз Ципф тоже пришел к выводу, что для городов и стран значение константы a почти или равно 1. В случае американских городов это значение составляет 0,947, для крупнейших городов мира — 1,156, а в случае переписи населения США 1940 года равно 1.

Безусловно, имеются и отклонения, особенно в наиболее крупных странах и городах. Например, в действительности в Индии (второй самой густонаселенной стране мира) жителей больше, чем можно было бы ожидать, опираясь на закон Ципфа. Однако волатильность (изменчивость значений) в начале упорядоченного списка неизбежна, поскольку там намного меньше данных. Можно предположить, что города и страны обходят друг друга в рейтинге по мере изменения численности населения под влиянием экономических, социальных и экологических факторов. Когда подобные изменения происходят в странах, занимающих самые высокие места в списке, отклонение от прямой линии становится гораздо заметнее. Тем не менее такой разброс данных в верхней части графика не должен приуменьшать важности точного расположения точек далее вниз по линии. Из этого следует, что частота встречаемости слов, а также численность населения городов и стран подчиняются универсальному закону.

Для Ципфа обнаружение одной и той же элементарной математической закономерности в разных контекстах было равносильно духовному пробуждению. «В явлениях повседневной жизни мы находим единство, упорядоченность и равновесие, внушающие нам веру в высшую разумность всего сущего, целостность которого пребывает за пределами наших полномочий и понимания», — писал Ципф. Он предложил принцип наименьших усилий в качестве теоретической базы для своих эмпирических наблюдений. Мы часто используем ограниченное количество слов, потому что нашему мозгу так легче; мы живем в больших городах, потому что нам так удобнее. Однако Ципф так и не смог предоставить убедительное математическое обоснование закона, как, впрочем, и никто сто лет спустя. Многие пытались это сделать, и хотя некоторые даже добились определенных успехов в данном направлении, причина, почему закон действует, по-прежнему остается загадкой. Математические модели часто подвергают критике за то, что они слишком упрощают сложные закономерности. В случае закона Ципфа верно обратное утверждение: математические модели невероятно сложны, а закономерность настолько проста, что ее может понять даже ребенок.

В начале ХХ века итальянский экономист Вильфредо Парето заявил, что распределение богатства среди населения подчиняется следующему закону:

Очевидно, что с математической точки зрения закон Парето эквивалентен закону Ципфа. Если составить список всех граждан страны в порядке уменьшения их богатства, график распределения последнего будет выглядеть точно так же, как представленный выше график частоты использования слов в этой книге. В целом самый богатый человек страны существенно богаче второго наиболее состоятельного человека, а тот, в свою очередь, намного богаче (хотя и чуть меньше, чем в предыдущем случае) третьего наиболее состоятельного человека, который гораздо богаче (хотя и чуть меньше, чем в предыдущем случае) четвертого наиболее состоятельного человека и т. д. В общем, к категории богачей относится крохотное меньшинство населения, тогда как его подавляющее большинство живет в бедности. Парето вывел этот закон на основании данных из многих стран и череды столетий. И он по-прежнему актуален.

Перейти на страницу:

Похожие книги