Внимание Вольфрама привлекло еще одно правило — правило 110. Оно формировало сетку ячеек, которая тоже представляла собой совокупность регулярных и случайных фигур. Вольфрам предположил, что данного уровня сложности достаточно для такой же имитации работы компьютера, на которую способна игра «Жизнь». В 2004 году Мэтью Кук доказал истинность предположения Вольфрама. Следовательно, теоретически единственный ряд клеток может сделать все, что и компьютер, используя всего один набор правил, определяющих, является ли клетка живой или мертвой, только на основании информации о состоянии двух ее соседей. Точно так же один ряд людей может сделать все, на что способен компьютер, воспользовавшись всего одним набором правил, определяющих, следует ли надевать шляпу или нет.
Клеточные автоматы — это дискретные математические модели, в которых фиксированные локальные правила генерируют неожиданно сложное поведение в более крупном масштабе. Вольфрам — один из главных сторонников той точки зрения, что клеточные автоматы — не только увлекательная математическая игра, но и способ объяснить сложность физического мира. Мысли Вольфрама по этому поводу изложены в книге A New Kind of Science («Новый вид науки»), которую он опубликовал за свой счет в 2002 году[185]. В частности, в ней Вольфрам утверждает, что информация, полученная благодаря анализу правила 30, открывает новую научную парадигму. Возьмем в качестве примера раковину ядовитой парчовой улитки, изображенную на рисунке ниже. Общепринятое представление об эволюции объясняет такой рисунок как результат естественного отбора. Но посмотрите на иллюстрацию правила 30! «Я считаю, что это просто удивительно, — говорит Вольфрам. — Достаточно всего лишь наугад выбрать эти простые [правила клеточных автоматов] — и вы получите нечто подобное [рисунку на этой раковине]».
Однако Вольфрам на этом не останавливается, поскольку убежден, что на базовом уровне Вселенная представляет собой клеточный автомат. Другими словами, он считает, что структура Вселенной аналогична решетке в игре «Жизнь», но существует вне пространства и времени. Следовательно, то, что происходит с вами сейчас, когда вы читаете эту книгу, — это
Вольфрам — не единственный ученый, который считает, что Вселенная может быть клеточным автоматом, но только он потратил массу времени и денег на попытки это доказать. Он систематически проводит испытания разных наборов правил, для того чтобы увидеть, какие вселенные они порождают. «Какое-то время у меня получалось нечто столь оригинальное, что я смог сказать: компьютер у меня в подвале ведет поиски Вселенной».
Вольфрам так описал свою стратегию: «Когда анализируешь разные наборы очень простых правил, становится очевидным, что некоторые из них безнадежны. Как будто вселенная погибает через два шага или же бесконечно расширяется таким образом, что ни один ее участок не имеет никакой связи с любым другим участком той же вселенной. Все это своего рода патология. И ты продолжаешь одолевать эти вселенные, а когда добираешься до тысячной, начинаешь находить такие, одолеть которые не так уж легко». Вольфрам добавил, что он находил вселенные, в чьем отношении «не было очевидно, что это не наша Вселенная», но отвлекался на выполнение задач, связанных с управлением компанией, и на другие проекты. Тем не менее он планирует возобновить охоту на вселенные в будущем. «Я надеюсь, что однажды на обороте моей визитной карточки будут написаны законы Вселенной, — смеется он. —
Является ли Вселенная клеточным автоматом или нет, но эта концепция все чаще используется в науке для моделирования самых разных феноменов, таких как транспортный поток, разрастание ряски на озере и рост городов. При этом в роли клетки может выступать отрезок дороги, фрагмент озера или участок земли. Существует еще одна область применения таких одномерных клеточных автоматов, ее открыл Крейг Лент из Университета Нотр-Дам, — квантово-точечные клеточные автоматы, в которых крохотные «квантовые точки» меняют свой электрический заряд исходя из конфигурации соседних точек. Лент надеется, что со временем эта нанотехнология займет место транзистора, поскольку транзистор, сделанный из квантовых точек, будет иметь гораздо меньшие размеры и выделять меньше тепла, чем обычный транзистор. Если квантово-точечная технология будет успешно разработана, то однажды клеточный автомат может появиться во всех электронных устройствах.