Читаем Красота в квадрате Как цифры отражают жизнь и жизнь отражает цифры полностью

Еще один аспект нашей реакции на числа — эмоциональная привязанность к некоторым из них. Помимо того что числа служат нам в качестве инструмента для подсчета, вычислений и установления количества тех или иных объектов, у нас возникают еще и определенные чувства по отношению к ним. Например, Джерри Ньюпорт любит несколько чисел, как близких друзей. Я не осознавал, насколько сильна привязанность людей к числам, пока не провел интернет-опрос, в ходе которого его участники должны были назвать свое любимое число и объяснить, почему они отдают ему предпочтение[27]. Я был поражен не только тем, какой интерес вызвал у людей этот опрос (за первые пару недель в нем приняли участие более 30 000 пользователей), но и разнообразием и эмоциональностью ответов: число 2 — потому что у респондента сделан пирсинг в двух местах; число 6 — потому что шестой в любимых альбомах респондента всегда оказывается самая лучшая песня; 7,07 — потому что опрашиваемый ежедневно встает в 7:07 утра, а однажды он сделал в местном магазине покупку на 7,07 доллара, общаясь с симпатичной кассиршей; 24 — потому что девушка, принявшая участие в опросе, спит, подогнув ногу в форме четверки, а ее парень спит на боку, и его тело в этот момент напоминает двойку; число 73, известное поклонникам сериала «Теория Большого взрыва» как «Чак Норрис чисел», — потому что главный герой сериала Шелдон Купер обратил внимание на то, что это двадцать первое простое число, а его зеркальное отображение 37 — двенадцатое простое число; число 83 — потому что оно хорошо звучит, когда нужно что-то преувеличить, как в такой фразе: «Наверное, я сделал это 83 раза!»; число 101 — потому что это самое меньшее целое число с артиклем «a» в английском названии; число 120 — потому что оно делится на 2, 3, 4, 5, 6, 8 и 10, предоставляя респонденту достаточно чисел для их подсчета в прямом и обратном направлении, пока он не уснет; число 159 — потому что эти цифры расположены по диагонали на клавиатуре телефона; число 18 912 — потому что оно с самым красивым в мире звучанием; и 142 857 («число феникса») — потому что его произведение на 1, 2, 3, 4, 5, 6 представляет собой анаграмму самого числа.

«Когда есть любимое число, ты испытываешь небольшое возбуждение каждый раз, когда едешь на 53-м месте в поезде или замечаешь, что на часах 9:53, — написал один из респондентов. — Я не вижу причин, почему у человека не должно быть любимого числа».

Следует заметить, что участие в опросе было сугубо добровольным и он представлял собой скорее развлечение, чем строгое научное исследование. Тем не менее полученные данные позволили обнаружить удивительные закономерности в выборе любимого числа.

Во-первых, охват чисел оказался просто огромным: 30 025 респондентов назвали 1123 любимых числа. Определенное количество голосов получили все числа от 1 до 100, а 472 числа попали в диапазон от 1 до 1000. Самым меньшим целым числом, за которое не было отдано ни одного голоса, стало 110. Неужели это самое нелюбимое число в мире?

Вот итоговая таблица.

Позиция/Число/Процент

1/7/9,7%

2/3/7,5%

3/8/6,7%

4/4/5,6%

5/5/5,1%

6/13/5,0%

7/9/4,8%

8/6/3,4%

9/2/3,4%

10/11/2,9%

11/42/2,8%

12/17/2,7%

13/23/2,3%

14/12/2,2%

15/27/1,9%

16/22/1,5%

17/21/1,4%

18/π/1,4%

19/14/1,3%

20/24/1,2%

21/1/1,2%

22/16/1,2%

23/10/1,2%

24/37/1,0%

25/0/1,0%

26/19/0,9%

27/18/0,8%

28/e/0,7%

29/28/0,7%

30/69/0,6%

Общий вывод таков: нам милее всего одноразрядные числа; кроме того, чем больше число, тем меньше оно нам нравится. Отображенные в таблице данные говорят также о шокирующем безразличии к круглым числам. Все числа от двух до девяти входят в первую десятку самых любимых чисел, однако само число 10 находится на двадцать третьем месте, число 20 — на пятидесятом, а 30 — на шестьдесят девятом. Число 10 — краеугольный камень десятичной системы счисления — почему-то не пользуется особой симпатией у людей; возможно потому, что «продает» себя ради округления чисел.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное

Все жанры