Пользуясь уравнением и диаграммой, можно определять характеристики транспортного потока. Так, средняя скорость выражается через тангенс угла наклона прямой, соединяющей начало координат с точкой, координаты которой характеризуют определенную интенсивность и плотность (N/D). Максимально возможная при данных условиях интенсивность движения, как это следует из диаграммы, достигается при определенной плотности транспортного потока (точка A на диаграмме) и называется пропускной способностью полосы движения или дороги в целом. Характерно, что при плотности потока, большей, чем в точке A, интенсивность движения снижается. Объясняется это тем, что при большой плотности движения, часто возникают заторы, снижается скорость и это приводит к уменьшению количества автомобилей, проходящих в единицу времени через какое-либо сечение или участок дороги. Из основной диаграммы и уравнения транспортного потока следует очень важный для регулирования движения вывод: в тех случаях, когда возникает потребность пропустить по дороге максимально возможное количество автомобилей, необходимо установить с помощью знаков определенный режим скорости, который обеспечивает наибольшую интенсивность» [10].
В.В. Семенов и ряд указанных выше специалистов США показали, что гидродинамическая модель неприменима для движения транспортных потоков высокой плотности, поэтому, на наш взгляд, используемые общие понятия, определения и уравнения, приведенные выше, не могут адекватно описывать и объяснять все ситуации в транспортных потоках.
В связи с этим пришлось ввести, на наш взгляд, более адекватную модель движения транспортного потока, которую и приведем ниже.
Рассмотрим процесс формирования транспортных потоков на магистралях без светофоров (без регулируемых перекрестков) [5].
Водитель, двигаясь с определенной скоростью по полосе движения, соблюдает дистанцию безопасности. Ее протяженность зависит от скорости движения и определяется из следующего соотношения:
lдб = τз • v + v²/50,
где τз – время задержки, то есть время реакции водителя на изменение окружающей обстановки; v – скорость автомобиля.
Если окружающая обстановка для водителя является стабильной и не беспокоит его, то, как показывает опыт, в среднем τз составляет около 0,5 сек, что характерно при стабильном движении автомобилей по выбранным им полосам движения значительное время, например, на междугородних магистралях-хайвеях со скоростью до 100 км/час.
При снижении скорости за предел в 30км/час, например, при повышении плотности транспортного потока, автомобили сближаются, появляется своего рода теснота, которая увеличивается с уменьшением скорости. Обстановка на дороге становится более сложной и время задержки увеличивается. Опыт показывает, что в этом случае τз увеличивается до 1 сек.
При высоких скоростях движения, начиная от 90-100 км/час, напряжение водителя также увеличивается, так как опасность возрастает, и τз снова увеличивается до 1 сек.
Однако время задержки 0,5 секунды сохраняется при скоростях автомобиля от 30км/час до 90-100 км/час только при стабильном движении автомобилей, без «перемешивания» потока, то есть без частых смен автомобилями полос движения. А это «перемешивание», как правило, происходит в городских условиях при наличии регулярно расположенных, частых въездов на магистраль и частых съездов с нее. Характерным примером этого является «Третье транспортное кольцо» (ТТК) Москвы. В этом случае ситуация для водителя является сложной и время задержки составляет около 1 секунды.
Время реакции водителя τз, конечно, зависит от опытности и квалификации водителя, но в среднем оно таково.
Показатель v²/50 учитывает разброс тормозных систем автомобилей.
Тормозной путь автомобиля sт = v²/2a, где а – отрицательное ускорение в м/сек². По техническим требованиям для современных транспортных средств, а должно быть не меньше 5 м/сек². Допустимый разброс имеет порядок 10%. Возьмем в качестве примера худший вариант – автомобиль, идущий впереди, отрегулирован при торможении на а = 5,5 м/сек², а следующий за ним автомобиль отрегулирован на а = 4,5 м/сек². Тогда, если один автомобиль, идущий со скоростью 25 м/сек, пройдет при торможении v²/2а = 625/9, другой автомобиль пройдет путь v²/2а = 625/11. Разность этих двух отрезков будет такова: Δs = v²/9 – v²/11= (11v² – 9 v²)/99 = 2v²/99 ~ v²/50 (м). Или Δs = v²/2а1 – v²/2а2 = v²(а2 – а1)/ 2а1∙ а2. При а1 = 4,5м/сек² и а2 = 5,5м/сек² Δs = v²( 5,5 – 4,5)/2•24,75 = v²/49,5 ≈ v²/50 (м).
Например, при v = 25м/сек (90км/час) и τз = 0,5 сек дистанция безопасности lдб = 0,5•25 + 25²/50 = 12,5 + 12,5 = 25м, а при τз = 1 сек lдб = 37,5м.
Введем понятие динамической длины транспортного средства lд. Динамическая длина является суммой средней физической длины автомобиля ls и дистанции безопасности lдб:
lд = ls + lдб
В среднем физическая длина автомобиля ls составляет 5 метров. Таким образом, динамическая длина lд – это участок дорожного полотна, который занимает автомобиль с учетом дистанции безопасности lдб.