Читаем Компьютерра PDA N91 (29.01.2011-04.02.2011) полностью

Первый опытный образец мемристора именно как функционального элемента электрической цепи был создан в лабораториях американской компании Hewlett-Packard в апреле 2008 года группой учёных под руководством Стенли Уильямса. Сегодня же в HP считают, что мемристоры начнут вытеснять с рынка флэш-память уже в будущем году, к 2014-2016 гг. они смогут заменить чипы оперативной памяти и жёсткие диски, а в 2020 году могут появиться и мемристорные компьютеры. Познакомимся с принципом работы и способами физической реализации этого интересного элемента.

Для начала немножко теории. Электрическая цепь может описываться четырьмя физическими величинами: в каждой точке (сечении) - силой тока (I) и зарядом (Q), между двумя точками (поверхностями) - напряжением или разностью потенциалов (U) и магнитным потоком (Φ). Все эти четыре величины попарно соотносятся друг с другом, причём эти соотношения представлены в физических элементах электросхемы. Так, резистор (сопротивление) реализует взаимосвязь силы тока и напряжения, конденсатор (ёмкость) - напряжения и заряда, катушка индуктивности - магнитного потока и силы тока. Эти три пассивных элемента - резистор, конденсатор и катушка индуктивности - считаются базовыми в электротехнике, поскольку электрическую схему любой сложности теоретически можно свести к эквивалентной схеме, построенной исключительно из сопротивлений, ёмкостей и индуктивностей.

В 1971 году американский физик Леон О. Чуа из Калифорнийского университета в Беркли выдвинул гипотезу, согласно которой должен существовать четвёртый базовый элемент электросхемы, который описывал бы взаимосвязь магнитного потока с зарядом. Такой элемент невозможно составить из других базовых пассивных элементов, хотя уже тогда его можно было смоделировать с помощью комбинации активных элементов, например операционных усилителей.

Чуа назвал "недостающий" элемент мемзистором - от слов "резистор" и "memory", то есть "память". Это название описывает одну из характеристик мемзистора, так называемый гистерезис, "эффект памяти", означающий, что свойства этого элемента зависят от приложенной ранее силы. В данном случае сопротивление мемристора зависит от пропущенного через него заряда, что и позволяет использовать его в качестве ячейки памяти. Это свойство было названо мемрезистивностью (M), значение которой есть отношение изменения магнитного потока к изменению заряда. Величина M зависит от количества заряда, прошедшего через элемент, то есть от того, как долго через него протекал электрический ток.

Принципиальное отличие мемристора от большинства типов современной полупроводниковой памяти и его главное преимущество перед ними заключаются в том, что он не хранит свои свойства в виде заряда. Это означает, что ему не страшны утечки заряда, с которыми приходится бороться при переходе на микросхемы нанометровых масштабов, и что он полностью энергонезависим. Проще говоря, данные могут храниться в мемристоре до тех пор, пока существуют материалы, из которых он изготовлен. Для сравнения: флэш-память начитает терять записанную информацию уже после года хранения без доступа к электрическому току.

Реализовать на практике эту красивую теорию удалось лишь в 2008 году, когда появились подходящие материалы и технологии. Достижение группы учёных HP под руководством Стэнли Уильямса в действительности трудно переоценить: впервые со времён Фарадея удалось физически воспроизвести принципиально новый элемент электрических цепей! Кстати, одним из ведущих разработчиков группы Уильямса и соавтором научной статьи о мемристорах в журнале Nature стал наш соотечественник Дмитрий Струков.

Конструктивно мемристоры значительно проще флэш-памяти: они состоят из тонкой 50-нм плёнки, состоящей из двух слоёв - изолирующего диоксида титана и слоя, обеднённого кислородом. Плёнка расположена между двумя платиновыми 5-нм электродами. При подаче на электроды напряжения изменяется кристаллическая структура диоксида титана: благодаря диффузии кислорода его электрическое сопротивление увеличивается на несколько порядков (в тысячи раз). При этом после отключения тока изменения в ячейке сохраняются. Смена полярности подаваемого тока переключает состояние ячейки, причём, как утверждают в HP, число таких переключений не ограничено.

На практике мемристор может принимать не только обычные для обычных чипов памяти два положения - 0 или 1, но и любые значения в промежутке от нуля до единицы, так что такой переключатель способен работать как в цифровом (дискретном), так и в аналоговом режимах.

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии