Блоги - самое место для срочных сообщений и комментариев, написанных, что называется, с пылу с жару. Сайту же оставим сайтово - то есть большие и хорошо проработанные статьи (которые, хочется верить, теперь станут ещё больше и ещё лучше).
В течение следующей недели мы подробнее расскажем о новых блогах и о том, как стать их пользователем, что делать дальше и, самое главное, зачем это делать. Старая традиция Readitorial сохранится, так что лучших авторовблоггеров ждут призы (и не только).
Перейти к блогам "Компьютерры".
Александр Бондарь (РАН) о видах "маленьких" коллайдеров
Автор: Алла Аршинова
Физика высоких энергий ставит перед собой огромное количество самых разных задач. Для их решения строятся коллайдеры: для ответа на каждый научный вопрос разрабатывается, как правило, уникальная ускорительная система. Отсюда – большое разнообразие коллайдеров. Например, размер самого большого ускорителя элементарных частиц в мире – 27 километров в окружности, а один из самых маленьких ускорителей совсем недавно был сделан в Томске, его длина составляет около 50 см, а вес – всего 30 кг. Он предназначен для диагностики нефтяных, металлургических, водопроводных и тепловых сетей.
Об ускорителях высокой интенсивности, о коллайдерах вообще и о том, какие исследования на них можно проводить, рассказывает доктор физико-математических наук, член-корреспондент Российской академии наук, заведующий лабораторией Института ядерной физики имени Г. И. Будкера СО РАН, декан физического факультета Новосибирского государственного университета, профессор Александр Бондарь.
– Какие существуют виды ускорителей для изучения физики высоких энергий?
- Давайте начнем с установок, на которых физики получают пучки частиц рекордных энергий. Например, LHC – это протон-протонный коллайдер, где протоны сталкиваются с протонами при высоких энергиях (7 ТэВ). На LHC также предполагается режим ион-ионных столкновений. Есть и другой тип установок, такие, как Tevatron, там сталкиваются протоны и антипротоны, с энергиями пучков порядка ТэВ, то есть несколько меньше, чем на LHC. Но преимущество этой установки в том, что она уже давно работает. У нас в институте есть другой тип коллайдеров: электрон-позитронные ускорители ВЭПП-4 и ВЭПП-2000. На них сталкиваются пучки электронов и позитронов. Максимальная энергия частиц на ВЭПП-4 – 5,5 ГэВ, на ВЭПП-2000 мы сталкиваем пучки с энергией до 1 ГэВ. Поэтому, конечно, как и в других областях физики, у нас тоже есть большое разнообразие установок.
– Чем отличаются между собой ВЭПП-4 и ВЭПП-2000?
- И та, и другая установка – это электрон-позитронные встречные пучки, но область энергий у них довольно разная, практически не перекрывающаяся. На ВЭПП-4 диапазон энергий от 1 до 5,5 ГэВ, это 5,5 миллиардов электроновольт. На ВЭПП-2000 область энергий – от порога рождения легчайших адронов (пионов) в районе 150 МэВ до 1 ГэВ. Эта область энергий уже изучалась на других установках.
– Диапазон энергий до 2 ГэВ сравнительно плохо изучен. Почему так получилось, ведь это относительно доступные энергии?
- Потому что установки, которые работали в этой области, имели относительно маленькую интенсивность, то есть светимость. Плотности пучков было недостаточно, чтобы исследовать редкие процессы. Науке все больше интересны редкие явления, которые не так часто происходят, поэтому ВЭПП-2000 – это установка нового поколения по светимости, хотя в этой области энергии уже работали и другие ускорители. У нас, например, была установка ВЭПП-2М, которая проработала 25 лет на энергии пучков до 700 МэВ (0,7 ГэВ). После того, как все возможности в исследованиях на этой установке были исчерпаны, мы решили, что нам проще сделать ее модернизацию, и построили ВЭПП-2000. Новый коллайдер работает приблизительно в такой же области энергий, но с заметно большей интенсивностью. Сейчас эта установка создана и начинает работать, то есть выдавать научную продукцию.
– Что такое В-фабрики?