Читаем Компьютерра PDA N116 (18.06.2011-24.06.2011) полностью

Вообще-то для обуздания неуправляемого кода существует аппаратная архитектура, основанная на изоляции адресных пространств памяти каждого процесса, кольцах безопасности и продуманном механизме переключении задач. Но прямое её использование существенно снижает производительность системы, в которой трудится множество программ (аппаратное переключение контекста процесса требует сотни циклов работы процессора). Кроме того, все преимущества аппаратной поддержки защиты памяти сводятся на нет лояльностью к вопросам работы с разделяемыми объектами и данными - основой коммуникаций процессов в нынешних системах.

В системах, подобных Singularity, предполагается тщательная верификация кода программы, которая будет в данный момент выполняться. Результат такой верификации - строгое математическое доказательство того, что этот код, именуемый проверенно безопасным (verifiably safe code), в ходе своего выполнения будет работать только с положенными ему объектами и не станет вносить никаких изменений в код и данные других процессов.

То есть, запуская любую программу, система предварительно удостоверяется в полной легитимности работы и, следовательно, полностью контролирует процесс её выполнения. Это и есть идея управляемого выполнения кода.

В такой модели работы процессов для них не требуется аппаратно выделять изолированные адресные пространства памяти и следить за тем, чтобы их границы не были нарушены. Поскольку все будущие действия процесса верифицированы и строго доказана их безопасность для системы и других процессов, то можно сказать, что работа процессов изолирована друг от друга программным способом. Даже располагаясь в едином адресном пространстве памяти, процессы не смогут помешать работе друг друга.

Но разве предварительная верификация кода не снижает производительность системы? Ведь такая проверка не менее затратна по времени и ресурсам, чем переключение процессов.

Ответ на этот вопрос кроется в прогрессе программных платформ управляемого выполнения кода. Основанные на типобезопасных языках, таких, например, как Java или C#, и высокопроизводительных runtime компиляторах, способных "на лету" генерировать оптимальный и дотошно проверенный код, на системах сборки мусора, корректно очищающих память после завершения работы программы, подобные платформы в последнее время сделали гигантский скачок в плане производительности. Теперь она соизмерима с выполнением обычного неуправляемого кода.

Процесс управляемого выполнения кода - основа архитектуры системы Singularity. Базируется он на спецификации Microsoft CLS (Common Language Specification), поддержка которой открыта для многих из имеющихся и вновь разрабатываемых языков программирования и компиляторов для них. Согласно CLS, эти компиляторы не генерируют неуправляемый код, а создают некий промежуточный код на языке MSIL (Microsoft Intermediate Language). Дополнительно с генерацией кода MISL они создают манифест - метаданные программы, в которых чётко описаны её типы, сведения о необходимых программе внешних объектах и правила взаимодействия с ними. Код MISL и манифест упаковываются в исполняемый PE (portable executable) файл.

Спецификация Microsoft CLS лежит в основе не только системы Singularity, но и среды разработки для традиционных систем .NET Framework

Дальше происходит компиляция MISL-кода в машинный код, специфичный для системы команд процессора, на котором запущена Singularity. Занимаются этим процессом или JIT-компилятор (just-in-time), генерирующий машинные команды для процессора "на лету", или же программа-генератор NGen (Native Image Generator), создающая традиционный исполняемый образ. Важным является то, что в ходе работы и JIT-компилятора, и программы NGen создаваемый машинный код проверяется на типобезопасность. В случае доказательства того, что полученный код типобезопасен, он исполняется, в противном случае генерируется исключение. Программа не прошла проверку и требует внесения изменений в свой исходный текст.

Проверка на типобезопасность кода каждой программы возможна только тогда, когда чётко доказана корректность работы всех компонентов системы управляемого выполнения кода. В настоящее время в Singularity для процессоров Intel x86 код MSIL компилируется в машинные инструкции компилятором Bartok, разработанным в той же Microsoft Research. При этом команда Singularity исходит из предположения, что Bartok не содержит ошибок и гарантированно создаёт типобезопасный машинный код.

В будущем должен быть создан специальный типизированный ассемблер TAL (Typed Assembly Language), который потребует от каждой программы доказательств её типобезопасности.

Читайте далее:Система строгого режима: Microsoft Singularity (часть 2)

<p id="sec_7">Василий Щепетнёв: Мерзость запустения</p>

Автор: Василий Щепетнев

Опубликовано 22 июня 2011 года

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии