Читаем Компьютерра PDA 22.05.2010-28.05.2010 полностью

Физики из Научно-технического университета Китая и пекинского Университета Цинхуа провели успешный эксперимент по квантовой телепортации фотонов в свободном пространстве на расстояние более 16 километров. 16 мая 2010 года сообщение об этом знаменательном событии появилось в научном журнале Nature Photonics. Впрочем, эта новость вряд ли о чём-то скажет людям, не знакомым хотя бы с основами квантовой физики, а слово "телепортация", известное многим лишь по научной фантастике, вообще может ввести в заблуждение относительно реального смысла проведённого опыта. Между тем, это большое событие для современной науки, а чтобы понять его значение, придётся немножко разобраться в основах квантовой физики. Далее мы попробуем объяснить их "на пальцах".

Начнём издалека. Как известно, атомы состоят из более простых субатомных частиц – положительно заряженных протонов и нейтральных нейтронов, образующих ядро, и отрицательно заряженных электронов, которые составляют электронное облако, окружающее ядро. По величине спина, то есть момента импульса, или, грубо говоря, момента вращения, элементарные частицы делятся на два класса: фермионы с полуцелым спином – это как раз упомянутые электроны, протоны, нейтроны и нейтрино, – и бозоны с целым спином – это фотоны, мезоны и глюон.

Для наблюдения и экспериментов в микромире особенно удобен фотон – безмассовая частица с нулевым зарядом, квант электромагнитного излучения ("световой квант", по определению Эйнштейна), существующий только в процессе движения со скоростью света. Фотон одновременно демонстрирует свойства и частицы, и волны, то есть корпускулярно-волновой дуализм. Свойства фотона (света) описываются и как свойства распространения волны, и как свойства частицы при взаимодействии с веществом. Универсальность наглядно демонстрируемого фотоном корпускулярно-волнового дуализма для любых частиц – один из базовых постулатов квантовой механики.

В отличие от "большого мира", в микромире объекты могут находиться в так называемой суперпозиции, то есть одновременно пребывать в неких промежуточных, альтернативных и взаимоисключающих с точки зрения классической механики состояниях. Если прибегнуть к привычному для компьютерщиков двоичному коду, то некая частица может одновременно означать и ноль, и единицу, а вероятность того, какое значение она примет, описывается волновой функцией. Пока мы не измерили это значение, частица пребывает именно в этом вероятностном состоянии, а измерив, мы немедленно изменяем частицу и получаем на выходе одно из вероятных значений.

Ещё одно важнейшее явление микромира – так называемая квантовая сцепленность или запутанность. Смысл этого явления заключается в том, что квантовые состояния двух или более частиц может быть связаны друг с другом, даже если эти частицы разнесены в пространстве. Квантовая сцепленность объясняет самые различные природные процессы, например, фотосинтез в растениях, при котором энергия солнечного света мгновенно "телепортируется" от "принимающих" молекул к молекулам, ответственным за электрохимические преобразования. Причём передаётся именно некоторое вероятностное состояние частицы, а не какая-то информация о нём, ведь частица находится в суперпозиции.

Здесь мы, наконец, приближаемся к сути явления квантовой телепортации. Сцепленность можно задать искусственно, поместив несколько частиц в одинаковые условия и воздействуя на них, например, лучом лазера при температуре, максимально близкой к абсолютному нулю, остановив хаотическое движение. В результате, если измерить состояние одной частицы, можно мгновенно определить и состояние всех, запутанных с ней. При этом исходная частица, состояние которой перенесется на новую, изменится сама, поскольку двух частиц с одинаковыми квантовыми состояниями быть не может: согласно теореме о запрете клонирования, невозможно создать идеальную копию произвольного неизвестного квантового состояния. То есть уничтожение начального квантового состояния – это необходимое условие телепортации.

Первый успешный эксперимент по телепортации поляризационного состояния фотона провели в 1997 году группы физиков из австрийского Университета Инсбрука и Университета Рима. В 2004 году учёным из того же Университета Инсбрука и американского Национального института стандартов и технологий удалось телепортировать уже квантовые состояния атома (точнее, ионов атома кальция и бериллия).

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии