Корейцы считают, что специальные метки, отпечатанные по их технологии, смогут использоваться для подтверждения подлинности товаров. Исследователи продолжают работать над способами обратимой фиксации цвета, чтобы фотонные кристаллы можно было применять даже в дисплеях. Впрочем, полагают специалисты, альтернативные технологии быстрого получения фотонных кристаллов (например, путем структурирования поверхности пластика лазером) могут оказаться выгоднее в производстве.
Другой прорыв наметился в создании плазмонных нанолазеров. Сразу две независимые научные группы из Калифорнийского университета в Беркли и Норфолкского университета (штат Вирджиния) продемонстрировали лазеры, размером не превышающие ста нанометров, что гораздо меньше дифракционного предела.
Миниатюрные лазеры давно приковывают внимание исследователей. Дело в том, что обычной электронике трудно работать на частотах выше десяти гигагерц, а оптическим устройствам и сотни терагерц вполне по плечу. Но оптический резонатор не может быть меньше половины длины волны. Давно предлагаются различные способы обхода «проклятья» дифракционного предела. Для этого, например, можно «смешать» свет с колебаниями электронной плазмы у поверхности металла и получить гибридные квазичастицы — поверхностные плазмоны. Но они сравнительно быстро разрушаются из-за неизбежных потерь на нагрев металла. Кроме того, в лазере должна быть возбужденная активная среда, усиливающая колебания, которую надо как-то сочетать с металлом. И до сих пор это оставалось непреодолимой преградой.
Группе в Беркли удалось изготовить лазер из полупроводникового нановолокна, содержащего сульфид кадмия. Нановолокно отделено от серебряной подложки прозрачным диэлектриком толщиной пять нанометров. В этом зазоре, значительно меньшем дифракционного предела, потери у поверхностных плазмонов невелики; накачиваемое светом нановолокно хорошо их усиливает, и возникает эффективная сине-зелёная (489 нм) лазерная генерация в полосе под волокном шириной 38 нм. Зажатые в зазоре плазмоны обладают рядом уникальных свойств — например, высокой концентрацией энергии. Их можно использовать как источник в плазмонной электронике и в квантовых вычислениях; с помощью плазмонов можно будет изучать отдельные молекулы и нагревать сверхмалые области для магнитной записи информации. Теперь учёные хотят заменить оптическую накачку плазмонного лазера электронной, что сделает вполне реальным его использование в чипах.
В Норфолке пошли другим путём. Созданный там плазмонный нанолазер (спазер) представляет собой шарик диаметром 44 нм с золотым ядром, которое «обернуто» слоем кварца с примесью молекул красителя. Сферическое ядро играет роль резонатора для плазмонов, а его оболочка является активной средой. Такое устройство помещают в воду и накачивают другим лазером. Сгенерированный спазером свет может оставаться в виде плазмонов в наночастице или излучаться зелёными фотонами с длиной волны 530 нм. Подобные шарики (по мнению изобретателей, их можно уменьшить до нанометра) способны стать основой новых микроскопов и биосенсоров, чувствительных к отдельным молекулам.
В погоне за солнечным зайчиком
Автор: Александр Бумагин
В середине июля двенадцать крупных европейских компаний подписали меморандум о проекте DESERTEC. Он предусматривает строительство гигантского комплекса солнечных (а также ветровых и прочих «альтернативных») электростанций, который решил бы многие энергетические проблемы континента, вырабатывая до 15% необходимой Европе электроэнергии. Практически одновременно корпорация РОСНАНО оформила своё участие сразу в трёх российских проектах, связанных с производством солнечных элементов для космической отрасли и наземного применения.
Оценить эти шаги пока довольно трудно ввиду разного масштаба инициатив и зачаточного состояния большинства проектов. DESERTEC1 потребует 400 млрд. евро в течение десяти лет, а РОСНАНО имеет возможность потратить лишь несколько миллиардов рублей. Инициаторы европейского проекта хотят вырваться вперед, а мы лишь рассчитываем догнать тех, кто впереди. Для них это стремление к энергетической независимости, в том числе и от нас, а мы решаем похожую проблему в пусть важном, но очень узком сегменте. Сравнивать эти усилия нельзя ещё и потому, что европейцы хотят с помощью жаркого африканского солнца и системы отражателей нагревать тепловые котлы, а РОСНАНО делает ставку на поглощение энергии излучения светила в полупроводниковых солнечных батареях: энергетика там и там солнечная, а технологии совершенно разные. К слову, в европейском проекте никакие технологические прорывы и не требуются, у них главная проблема — в грандиозности задуманного.
Мы все, наверное, привыкли к тому, что в нашей стране крупные государственные вложения в технологии делаются нечасто. А если и делаются, то сплошь и рядом все оканчивается пшиком. Интересно, что получится с обузданием Солнца.