Сигналы, в которых доля положительного напряжения равна доле отрицательного даже за короткий промежуток времени, называются симметричными (balanced signals)20. Их среднее значение равно нулю, а значит, в них отсутствует составляющая постоянного тока. Это является преимуществом, поскольку некоторые каналы связи (например, коаксиальный кабель и линии с трансформаторами) сильно ослабляют составляющую постоянного тока из-за их физических свойств. Кроме того, при подключении приемника к каналу связи методом емкостного соединения (capacitive coupling) передается только переменная составляющая тока. В любом случае при отправке сигнала с ненулевым средним значением только впустую тратится энергия, ведь составляющая постоянного тока будет отфильтрована.
Симметрирование кабеля обеспечивает тактовые переходы для синхросигналов благодаря сочетанию положительного и отрицательного напряжения. Также оно позволяет легко настраивать приемники, ведь среднее значение сигнала всегда можно измерить и использовать как порог решения для декодирования символов. Если сигналы несимметричны, среднее значение может отклоняться от истинного уровня принятия решения, например, из-за плотности единиц. Таким образом, большее число символов будет декодировано с ошибками.
Простейший способ реализации симметричного кода — использовать в качестве логической «1» и логического «0» два разных уровня напряжения. Например, +1 В для бита 1 и –1 В для бита 0. Для отправки «1» передатчик чередует уровни +1 В и –1 В, чтобы среднее значение всегда было нулевым. Это биполярное кодирование (bipolar encoding). В телефонных сетях оно называется кодированием с чередованием полярности (Alternate Mark Inversion, AMI) в соответствии со старой терминологией, в которой «1» называлась «отметка» («mark»), а «0» — «пробел» («space»). Пример приведен на илл. 2.14 (д).
При биполярном кодировании добавляется еще один уровень напряжения, чтобы достигнуть баланса. Для этой цели также можно воспользоваться кодом, аналогичным 4B/5B (как и для получения тактовых переходов при восстановлении синхросигналов). Пример подобного симметричного кода — линейный код 8B/10B. В нем 8 бит входного сигнала соотносится с 10 битами выходного, так что его КПД составляет 80 % (как и в случае 4B/5B). 8 бит разбиваются на две группы: из 5 бит (которые сопоставляются с 6 битами) и из 3 бит (сопоставляются с 4 битами). Далее 6-битный и 4-битный символы объединяются. В каждой группе некоторые входные паттерны можно соотнести с симметричными выходными паттернами с тем же числом нулей и единиц. Например, «001» соответствует симметричный паттерн «1001». Впрочем, возможных сочетаний недостаточно, чтобы все выходные паттерны были симметричными. В подобных случаях входной паттерн сопоставляется с двумя выходными, у одного из которых будет лишняя единица, а у второго — лишний ноль. Например, паттерн «000» ассоциируется с паттерном «1011» и дополнительным к нему паттерном «0100». При сопоставлении входных битов с выходными, кодировщик запоминает дисбаланс (disparity) предыдущего символа. Этот дисбаланс равен общему количеству нулей или единиц, которых сигналу не хватает до симметричности. Далее кодировщик выбирает либо выходной паттерн, либо дополнительный к нему для снижения дисбаланса. В случае кода 8B/10B максимальный дисбаланс равен 2 битам. Следовательно, сигнал никогда не будет сильно отличаться от симметричного. Также в нем не будет более пяти последовательных единиц или нулей, что удобно для восстановления синхросигнала.
Передача в полосе пропускания
Передача сигналов в базовой полосе частот лучше всего подходит для проводной связи: по витой паре, коаксиальному или оптоволоконному кабелю. В других случаях (особенно в беспроводных сетях или радиосвязи) для передачи информации используется диапазон частот, не начинающийся с нуля. Отправлять сигналы очень низкой частоты по беспроводным каналам не имеет смысла, поскольку длина антенны должна составлять определенную долю длины волны сигнала. При низкочастотной передаче она окажется довольно большой. В любом случае выбор частот обычно диктуется нормативными ограничениями и желанием избежать помех. Даже при проводной передаче данных ограничение сигнала определенной полосой частот позволяет различным видам сигналов одновременно проходить по каналу. Этот процесс называется передачей в полосе пропускания, поскольку для нее используются произвольные полосы частот.
К счастью, все основные результаты, представленные в этой главе, сформулированы на языке пропускной способности, то есть ширины диапазона частот. Абсолютные величины частот не влияют на производительность. Это значит, что при сдвиге сигнала, занимающего основную полосу частот от 0 до B Гц, на полосу частот от S до S+B Гц объем информации в сигнале не поменяется, хотя сам он будет выглядеть иначе. А чтобы обработать сигнал на приемнике, его можно сдвинуть назад до основной полосы частот, где удобнее находить символы.