При разработке старых протоколов обычно ставилась задача минимизировать количество битов, переданных в линию, часто за счет использования полей малого размера и упаковывания нескольких полей вместе в один байт или слово. Сегодня экономить пропускную способность смысла нет: ее более чем достаточно. Проблема заключается в обработке пакетов, поэтому при разработке новых протоколов минимизировать нужно именно время обработки. Разработчики IPv6, к счастью, хорошо понимают это.
Возникает соблазн создать быстрый сетевой интерфейс на аппаратном уровне. Сложность в том, что если протокол не является совсем простым, аппаратный интерфейс представляет собой дополнительную плату с отдельным процессором и своей программой. Чтобы сетевой сопроцессор не был столь же дорогим, как и центральный CPU, он часто представляет собой медленную микросхему. В результате центральный CPU ждет, пока сопроцессор выполнит свою работу. Было бы ошибкой полагать, что у центрального CPU обязательно найдется другая задача на время ожидания. Кроме того, для общения двух процессоров общего назначения потребуются тщательно продуманные протоколы, обеспечивающие их корректную синхронизацию. Как правило, наилучший метод заключается в создании простых протоколов, чтобы всю работу мог выполнять центральный процессор.
Для гигабитных сетей крайне важна структура пакета. В заголовок следует включить как можно меньше полей — это позволит снизить время его обработки. Сами поля должны быть достаточно большими, чтобы справляться с задачей, при этом они не должны пересекать границы слов; тогда их будет проще обработать. Под «достаточно большим» подразумевается размер, который исключает зацикливание порядковых номеров при существовании в сети старых пакетов, неспособность получателя сообщить доступный размер окна из-за мелкого служебного поля и другие проблемы.
Максимальный объем данных должен быть большим, чтобы снизить программные накладные расходы и обеспечить эффективную работу сети. 1500 байт — недостаточный размер пакета для высокоскоростных сетей, поэтому гигабитная сеть Ethernet позволяет передавать сверхдлинные фреймы размером до 9 Кбайт, а IPv6 поддерживает джамбограммы, превышающие 64 Кбайт.
Далее мы обсудим вопрос обратной связи в высокоскоростных протоколах. Из-за относительно длинного цикла задержки желательно отказаться от обратной связи: на оповещение отправителя уходит слишком много времени. Пример обратной связи — управление скоростью передачи с помощью протокола раздвижного окна. Чтобы избежать задержек (которые могут быть долгими), связанных с передачей сведений о состоянии окна от получателя отправителю, лучше использовать протокол, основанный на скорости. В этом случае отправитель будет передавать данные на той скорости, с которой получатель заранее согласился (но не быстрее).
Еще один пример обратной связи — алгоритм медленного старта, разработанный Джейкобсоном. Этот алгоритм проводит многочисленные проверки, пытаясь узнать пропускную способность сети. В высокоскоростных сетях на проведение пяти-шести тестов для определения отклика сети тратится огромное количество сетевых ресурсов. Более эффективная схема состоит в резервировании ресурсов отправителем, получателем и сетью в момент установления соединения. Кроме того, заблаговременное резервирование ресурсов позволяет несколько снизить джиттер. Иными словами, рост скоростей передачи неумолимо подталкивает разработчиков к использованию сетей, ориентированных на установление соединения.
Еще одно полезное свойство для протокола — возможность отправлять нормальное количество данных вместе с запросом соединения. Благодаря этому можно сэкономить один RTT.
6.8. Резюме
Транспортный уровень — это ключ к пониманию многоуровневых протоколов. Он предоставляет различные службы, важнейшей из которых является сквозной, надежный, требующий соединения поток байтов от отправителя к получателю. Доступ к нему осуществляется с помощью служебных примитивов: с их помощью можно устанавливать, использовать и разрывать соединения. Общепринятый интерфейс транспортного уровня обеспечивается сокетами Беркли.
Транспортные протоколы должны управлять соединением в ненадежных сетях. Установление соединения осложняется возможностью наличия дубликатов пакетов, которые могут появляться в самый неподходящий момент. Для борьбы с ними при установлении соединения применяется алгоритм «тройного рукопожатия». Разрыв соединения — более простой, но далеко не тривиальный процесс из-за проблемы «двух армий».
Даже если сетевой уровень абсолютно надежен, у транспортного уровня немало работы. Он должен обрабатывать все служебные примитивы, управлять соединениями и таймерами, распределять пропускную способность и осуществлять контроль перегрузки, а также использовать раздвижное окно переменного размера для управления потоком данных.