Оптоволокно используется для пересылки информации на очень большие расстояния по сетевым магистральным соединениям, внутри высокоскоростных локальных сетей (хотя пока что ему не удается достаточно далеко уйти вперед от медных проводов) и для высокоэффективного доступа в Интернет, например, по технологии FTTH (Fiber to the Home — волокно прямо к дому). Оптоволоконная система передачи данных состоит из трех основных компонентов: источника света, носителя, по которому распространяется световой сигнал, и приемника сигнала, или детектора. Световой импульс принимают за единицу, а отсутствие импульса — за ноль. Свет распространяется в сверхтонком стеклянном волокне. При попадании на него света детектор генерирует электрический импульс. Присоединив к одному концу оптического волокна источник света, а к другому — детектор, мы получим однонаправленную систему передачи данных. Система принимает электрические сигналы и преобразует их в световые импульсы, передающиеся по волокну. На другой стороне происходит обратное преобразование в электрические сигналы.
Такая передающая система была бы бесполезна, если бы свет по дороге рассеивался и терял свою мощность. Однако в данном случае используется один интересный физический закон. Когда луч света переходит из одной среды в другую, например из стекла (расплавленного и застывшего кварца) в воздух, луч отклоняется (эффект рефракции или преломления) на границе стекло-воздух, как показано на рис. 2.5,
Рис. 2.5. Три примера преломления луча света, падающего под разными углами, на границе кварцевого волокна и воздуха (а); луч света, пойманный полным внутренним отражением
На рис. 2.5,
Однако если уменьшить диаметр волокна до нескольких длин волн света, то волокно начинает действовать подобно волноводу, и свет может двигаться только по прямой линии, без отражений от стенок волокна. Такое волокно называется одномодовым. Оно стоит дороже, но может использоваться при передаче данных на большие расстояния. Сегодняшние одномодовые волоконные линии могут работать со скоростью 100 Гбит/с на расстоянии до 100 км. В лабораториях были достигнуты и более высокие скорости, правда, на меньших дистанциях.
Прохождение света по волокну