Читаем Компьютерные сети. 5-е издание полностью

Каждая стратегия занимает свою, так сказать, экологическую нишу. В высоконадежных каналах, таких как оптоволокно, дешевле использовать код с обнаружением ошибок и просто заново передавать случайные поврежденные блоки. Однако, скажем, беспроводные соединения, в которых может возникать множество ошибок, чаще используют коды с избыточностью, достаточной для того, чтобы приемник мог определить, какие данные должны были прийти. Прямое исправление ошибок применяется в шумных каналах, так как вероятность ошибки при повторной передаче так же велика, как и при первой.

Для того чтобы определить, какой метод лучше подойдет в конкретной ситуации, нужно понять, какой тип ошибок более вероятен. Ни код с исправлением ошибок, ни код с обнаружением ошибок не позволят справиться со всеми возможными ошибками, поскольку лишние биты, передаваемые для повышения надежности, также могут быть повреждены в пути. Хорошо бы, если бы каналы передачи данных могли отличать дополнительные биты от битов данных, но это невозможно. Для канала все биты одинаковы. Это означает, что для того чтобы избежать необнаруженных ошибок, необходимо использовать достаточно надежные коды, чтобы успешно справляться со всеми обнаруженными.

В одной модели считается, что причина ошибок — экстремально высокие значения термального шума, которые изредка на короткие промежутки времени перекрывают сигнал, порождая изолированные однобитные ошибки. Вторая модель предполагает, что ошибки чаще возникают целыми последовательностями, а не по одиночке. Объясняется это физическими процессами, вызывающими неполадки, такими как глубокое замирание беспроводного канала или временная электрическая помеха в кабельном канале.

Обе модели имеют практическую значимость, но у каждой свои преимущества и недостатки. Почему последовательность ошибок может быть лучше одиночных? Компьютер всегда отправляет данные блоками. Предположим, что размер блока равен 1000 бит, а вероятность ошибки равна 0,001 на один бит. Если бы ошибки были независимыми, то почти в каждом блоке обнаруживалась бы ошибка. Однако если возникнет целая последовательность ошибок, то в среднем из ста блоков только один будет поврежден. С другой стороны, последовательность ошибок исправить намного сложнее, чем изолированные ошибки.

Существуют и другие типы ошибок. Иногда местоположение ошибки известно. Например, физический уровень получает аналоговый сигнал, значение которого намного отличается от ожидаемого нуля или единицы, и объявляет, что бит потерян. Такой канал называется каналом со стиранием (erasure channel). В каналах со стиранием ошибки исправлять проще, чем в каналах, где значения битов меняются на противоположные: даже если значение бита утеряно, по крайней мере, нам известно, где притаилась ошибка. Тем не менее воспользоваться преимуществами стирающих каналов удается нечасто.

Далее мы рассмотрим коды с исправлением ошибок и коды с обнаружением ошибок. Прошу вас только не забывать о двух вещах. Во-первых, мы изучаем этот вопрос на канальном уровне, так как это первое место, где перед нами встает проблема надежной пересылки группы битов. Однако коды используются весьма широко, так как вопрос надежности важен всегда и везде. Коды исправления ошибок можно встретить на физическом уровне, особенно когда речь идет о зашумленных каналах, и на более высоких уровнях, особенно при рассылке мультимедийной информации в режиме реального времени. Коды обнаружения ошибок применяются на канальном, сетевом и транспортном уровнях.

Помимо этого, следует помнить, что коды ошибок относятся к прикладной математике. Если только вы не крупный специалист по полям Галуа или свойствам слабо заполненных матриц, используйте надежные коды, полученные из проверенных источников, и не пытайтесь конструировать собственные. В действительности, так делается во многих стандартных протоколах; одни и те же коды будут встречаться вам снова и снова. Далее мы подробно изучим простой код, а затем коснемся нескольких более сложных. Так вы сможете лучше понять преимущества и недостатки различных кодов и познакомиться с кодами, применяемыми на практике.

3.2.1. Коды с исправлением ошибок

Мы рассмотрим четырех разных кода с исправлением ошибок:

1.    Коды Хэмминга.

2.    Двоичные сверточные коды.

3.    Коды Рида—Соломона.

4.    Коды с малой плотностью проверок на четность.

Перейти на страницу:

Все книги серии Классика computer science

Компьютерные сети. 5-е издание
Компьютерные сети. 5-е издание

Перед вами — очередное, пятое издание самой авторитетной книги по современным сетевым технологиям, написанной признанным экспертом в этой области Эндрю Таненбаумом в соавторстве с профессором Вашингтонского университета Дэвидом Уэзероллом. Первая версия этого классического труда появилась на свет в далеком 1980 году, и с тех пор каждое издание книги неизменно становилось бестселлером и использовалось в качестве базового учебника в ведущих технических вузах. В книге последовательно изложены основные концепции, определяющие современное состояние и тенденции развития компьютерных сетей. Авторы подробнейшим образом объясняют устройство и принципы работы аппаратного и программного обеспечения, рассматривают все аспекты и уровни организации сетей — от физического до уровня прикладных программ. Изложение теоретических принципов дополняется яркими, показательными примерами функционирования Интернета и компьютерных сетей различного типа. Пятое издание полностью переработано с учетом изменений, происшедших в сфере сетевых технологий за последние годы и, в частности, освещает такие аспекты, как беспроводные сети стандарта 802.12 и 802.16, сети 3G, технология RFID, инфраструктура доставки контента CDN, пиринговые сети, потоковое вещание, интернет-телефония и многое другое.

А. Гребенькова , Джеймс Уэзеролл

Технические науки

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука