Вдохновленные успехом КЭД, в 50-х гг. многие теоретики решили применить аналогичные методы к слабому, сильному и гравитационному взаимодействиям. Но это теоретическое троеборье оказалось не таким легким, как виделось на первый взгляд. Каждый этап эстафеты таил в себе свои препятствия.
На тот момент в теорию бета-распада Ферми, которая в новой версии стала называться универсальным взаимодействием Ферми, были включены мюоны. Одно из главных предсказаний этой теории получило свое подтверждение в середине десятилетия. Фредерик Рейнс и Клайд Коуэн из Лос-Аламосской национальной лаборатории поместили возле атомного реактора огромный контейнер с жидкостью и впервые впрямую зарегистрировали нейтрино. Эксперимент был нацелен на то, чтобы поймать редкие случаи взаимодействия реакторных нейтрино с протонами жидкости. Последние при этом превращаются в нейтроны и позитроны (антиэлектроны) - происходит так называемый обратный бета-распад. Когда частица встречает свою античастицу, они аннигилируют (исчезают), излучая свою энергию в фотонах. К испусканию фотонов приводит и поглощение жидкостью нейтронов. Поэтому Рейнс и Коуэн догадались, что по паре одновременных вспышек (во второй, светочувствительной жидкости), вызываемых этими двумя потоками фотонов, можно судить о присутствии нейтрино. Как ни редки такие события, экспериментаторы их засекли. Последующие эксперименты с гораздо большими объемами жидкости, проведенные Рейнсом и Коуэном, а также другими группами, подтвердили этот революционный результат.
Когда последний ингредиент теории Ферми - предшественницы теории слабого взаимодействия - получил свое экспериментальное подтверждение, физики уже начали осознавать ее очевидную неполноту. Особенно явно она выступала при сравнении с потрясающими результатами КЭД. В КЭД в изобилии присутствуют всевозможные естественные симметрии. На диаграммах Фейнмана, где представлены электродинамические процессы, одна из них просто бросается в глаза. Поменяем направление временной оси, заставив течь время в противоположном направлении, - рисунок от этого не изменится. Следовательно, процессы, идущие вперед и назад по времени, не отличаются. Эта симметрия называется инвариантностью относительно обращения времени.
Вторая симметрия сравнивает между собой процесс и его зеркальное изображение. Если процесс в зеркале идет так же, как и без него (эта ситуация имеет место в КЭД), говорят о сохранении четности. Скажем, буква «Ш», совпадающая со своим зеркальным изображением, четность сохраняет, а вот букве «Щ» ее хвостик мешает это сделать.
В КЭД, кроме того, идеально сохраняется масса, давая повод ввести еще одну симметрию. Когда электроны (или другие заряженные частицы) перекидываются между собой фотонами, последним, что бы ни случилось, запрещается носить с собой массу. Электроны в электромагнитных процессах остаются электронами и никогда не меняют свой облик. Не надо быть гением, чтобы заметить разницу с бета-распадом, где электроны жертвуют своим зарядом и массой и примеряют на себя образ нейтрино.
Вопрос о симметриях слабого взаимодействия в 1956 г. выступил на передний план, когда американские физики китайского происхождения Цзун Дао Ли и Чэнь Нин (Фрэнк) Янг предложили изящное решение загадки с распадом мезона. Примечательно, что у положительных каонов есть два канала распада: они распадаются на два или три мезона. Причем четности конечных состояний не совпадают. Поэтому напрашивалось объяснение, что и рождающие их частицы относятся к разным классам. Но Ли и Янг показали: если допустить, что в слабых процессах четность не сохраняется, и те и другие продукты могут происходить от одной-единственной частицы. Так что иногда распады с участием слабых сил в зеркале меняют свою внешность. Нарушение четности на первый взгляд противоречит здравому смыслу, но оно, как оказалось, дает ключ к пониманию деталей слабого взаимодействия.
Ядерные силы не в пример бережнее относятся к сохранению четности. Благодаря Юкаве это мощное, но короткодействующее взаимодействие в 50-х гг. одним из первых могло похвастаться квантовой версией. Но поскольку тогда экспериментаторы еще не имели понятия о внутренней структуре самих нуклонов, теория Юкавы оставалась неполной.