— Яковлев — доктор технических наук, экспериментатор, человек энергичный и напористый, нес самую тяжкую часть работы в Центре управления. Кандидат физико- математических наук Савич сделал большой вклад в разработку новых методов наблюдений. Они и их молодые сотрудники Ефимов и Васильев, выросшие в нашем институте, проводили эксперименты не только в основное время работы передатчика, но часто и в необычные, экзотические моменты — когда станция уходила за диск планеты. В эти минуты радиоволны пронизывают наибольшую толщу атмосферы планеты, что особенно интересно для нашей цели.
— Наблюдения при «радиозаходах» окончательно отучили нас от мысли, что космос — пустое пространство, — вспоминает Колосов. — Честно говоря, когда начинали работу, я, как и многие, думал: что может в пустоте мешать распространению радиоволн? Записи самописца раскрыли удивительное разнообразие окружения планет, Луны и Солнца.
Американские радиоспециалисты тоже начали проводить сходные исследования по программе «Маринер». Часто работы шли параллельно, иногда мы опережали друг друга, но в общем результаты сравнивались.
Так было до тех пор, пока мы не использовали двухчастотный метод. Он уже применялся при первых запусках спутников для изучения земной атмосферы, однако требовал установки дополнительного передатчика.
Когда советская межпланетная станция отправилась в сторону Марса, на ее борту стоял дополнительный передатчик. Аппаратура наблюдения обогатилась двухчастотным интерферометром. В его задачу входило принимать радиоизлучение двух бортовых передатчиков и сравнивать результаты. Это не только сделало наблюдения более точными и детальными, но принесло сведения, которые прежний способ дать не мог.
Марс оказался не очень «контактным» — его разреженная атмосфера слабо влияет на распространение радиоволн. Это влияние можно было ощутить только при просвечивании атмосферы Марса в тот период, когда космическая станция оказывалась в зоне полутени за планетой. И тем не менее метод, использованный учеными, помог раздвинуть возможности наблюдения. Нам удалось прощупать ионосферу Марса до больших высот, чем американским специалистам. Это дает существенные преимущества при объяснении ее структуры.
Достоинства двухчастотного метода позволили обнаружить плазму на освещенной Солнцем стороне Луны — своеобразную лунную ионосферу. Высокая чувствительность разработанной в институте аппаратуры позволила определенно говорить о слое плазмы, окружающем освещенную часть лунной поверхности.
Сравнивая результаты радиопросвечивания атмосферы Марса с помощью передатчиков, установленных на борту аппаратов «Марс-2» и «Маринер-9». удалось измерить атмосферное давление вблизи поверхности планеты и установить, что его изменения соответствуют рельефу. Если к этому добавить и те сведения, которые получены с помощью радиолокации Марса (исследованиями руководил академик — В.1 Котельников), получается более ясная картина строения его поверхности. Установлено, что когда сигнал отражается от ровных участков, в спектре планеты нет изменений по сравнению с сигналом передатчика. Если же отражающая поверхность изрезана оврагами, горами, меняются спектральные и энергетические характеристики пришедшего на Землю сигнала.
Открылась широкая перспектива изучения поверхности Венеры, которая недоступна оптическим наблюдениям из-за плотного облачного слоя. Сведения, принесенные радиоволнами, были дополнены благодаря посадке станции на ее поверхность.
Кроме чисто практических результатов, которые дает знание ближайших к нам космических окрестностей, получен ряд интересных научных наблюдений. Так, например, искривление радиолучей в плотной атмосфере Венеры оказалось столь велико, что они зачастую не могут вырваться за ее пределы, происходит как бы захватывание радиоволн в ловушке атмосферы планеты.
Сейчас накоплен богатый объем наблюдений планетных атмосфер, их можно сравнивать между собой. У газовых оболочек Марса, Венеры, Земли много общего, много и различного, специфического. Особенно любопытный результат дает сравнение дневных ионосфер Марса и Венеры, которые, оказалось, отличаются незначительно.
Подверглась радиопросвечиванию и солнечная корона. Она состоит в основном из полностью ионизированного гелия, истекающего с поверхности Солнца, и движется по радиальным направлениям от него, подгоняемая «солнечным ветром». Он разносит солнечное вещество далеко вокруг светила, создавая неоднородную плазму. Тут и струи, и облака, и турбулентные всплески электронов. Получить возможность следить за этой бурлящей средой, влияние которой мы чувствуем на Земле, — большая победа науки.
Надо сказать, что случай движения космического корабля вблизи Солнца наиболее интересен и труден. Здесь на радиоволны и
на сам космический аппарат сильно влияет гравитационное поле светила. Если радиоволна проходит вблизи него, лучевая линия искривляется, наблюдается задержка радиоволны, ее запаздывание. Эти тонкие эффекты требуют особого искусства наблюдения. Изучение таких явлений важно для проверки общей теории относительности.