Однако люди научились воспроизводить процессы, происходящие на звездах, гораздо раньше, чем приблизились к ним. Ядерные реакции уже скопированы в миниатюре на Земле.
Поиски путей получения искусственных алмазов приводили к попыткам создать в лабораториях условия, царящие в недрах Земли, к попыткам овладеть одной из важнейших сил природы — высоким давлением. Когда ученые заглянули в глубь вещества, сжатого высоким давлением, им открылся мир удивительных превращений. На их глазах исчезали знакомые вещества и появлялись новые, с иными свойствами и характерами. Исследователи сдавили желтый фосфор — он превратился в черное вещество с новыми физическими свойствами. Сжали лед — и оказалось, что знакомый всем нам лед лишь одна из семи его разновидностей и, кроме льда холодного, существует «горячий». Давление превращало серое олово со свойствами полупроводника в белое — металл.
И чем выше было давление, достигнутое при исследовании, чем сильнее сжималось вещество, тем большим становилось число новых, неожиданных явлений. Просветив подопытные материалы рентгеновскими лучами, ученые воочию убедились в необыкновенной силе воздействия высокого давления. Оно способно насильственно приблизить друг к другу атомы вещества, способно сдавить их так, что исчезнут все свободные участки между ними. При дальнейшем возрастании давления молекула превращалась в плотно сжатый комок атомов. А при давлениях в десятки и сотни миллионов атмосфер начинается переход к так называемому «раздавленному атому».
Кто не слышал о диковинных «белых карликах» — звездах, сжатых силами тяготения до такой степени, что большинство атомных ядер, оголенных, освобожденных от электронных оболочек, как бы сжимаются в один гигантский комок! Наперсток такого вещества весит столько, что его не увезет ни один локомотив.
Но ученые уверяют, что и это не предел сжатия материи. Можно так спрессовать ее, что будут деформироваться даже ядра атомов. Ядерные частицы нейтроны и протоны, сминая оболочки соседних частиц, вдавливаются в них, ломая и переделывая их структуру. Из такой обнаженной материи должны состоять «гиперонные» звезды, если они вообще существуют в природе. В таком состоянии материи оголены и прижаты друг к другу даже еще не изученные «ядрышки» протонов и нейтронов. И наперсток такого вещества весил бы десятки миллиардов тонн.
Это почти «крайние» давления, существующие в природе. Но нет ничего удивительного в том, что уже при давлениях, достижимых в лабораториях и не превышающих пока сотни тысяч атмосфер, поведение вещества не похоже на обычное.
Особенно удивило ученых поведение твердых кристаллических тел, сжатых высоким давлением. Если сжатый газ превращается в жидкость, а жидкость — в твердое тело, то как же действует высокое давление на кристаллическую решетку? — не раз задавали себе вопрос физики. Просветив одно из кристаллических тел — хлористый рубидий — рентгеновскими лучами, они увидели удивительную картину. Атомы, будто солдаты в строю, занимали каждый свое определенное место, создавая иногда причудливый узор кристаллической решетки. Даже под очень высоким давлением солдаты-атомы не разбегались, а перегруппировывались в более плотные построения.
Такую деформацию кристаллической решетки ученые увидели и у графита. Оказалось, что именно перегруппировка атомов углерода в графите в более стойкую формацию и рождает алмаз. И происходит это, как предсказал советский ученый Лейпунский, при давлении в несколько десятков тысяч атмосфер и температуре в несколько тысяч градусов.
Чудо современной техники позволило людям повторить чудо природы.
Применив столь высокое давление и температуру, советские, американские и шведские ученые уже в наши дни получили искусственные алмазы. Правда, они почему-то желтого цвета, что снижает их ювелирную ценность, зато они тверже естественных алмазов, что особенно важно для техники.
Советские ученые не остановились на этом. Получение алмазов было для них лишь одной из задач. По-настоящему их волновала другая сторона той же самой «алмазной» проблемы, которая привела к гораздо более важным результатам.
Нечто многообещающее в «алмазной проблеме» советские ученые увидели еще тогда, когда физики всего мира ломали головы над труднейшей задачей: из какого материала изготовить «печь», которая не разорвалась бы от громадного внутреннего давления в десятки тысяч атмосфер? И они нашли одно на первый взгляд странное решение. Аппарат для получения сверхвысокою давления сделали из самых обычных материалов, зато поместили его в жидкость. Да, в жидкость, которая, в свою очередь, находилась под большим давлением. Не правда ли, удивительно?
Чтобы стена покосившегося дома не обрушилась, ее подпирают балками. Подобно этому, стенки прибора как бы поддерживаются со всех сторон жидкостью, которая, как оказалось, придает его стенкам большую дополнительную прочность.