Сейбел: Удивительно, что вы считаете эту идею настолько глупой. В своей статье «Teach Yourself Programming in Ten Years» (Как самому научиться программировать за десять лет) вы утверждаете, что программирование — навык, который, как и многие другие, требует десятилетнего оттачивания, чтобы человек стал мастером. Во многих ремеслах работает модель мастер/подмастерье/ученик. Может, никому не нравится быть учеником, но что ужасного в том, что человек с десятилетним опытом будет выполнять другую работу, нежели желторотый новичок?
Норвиг: Лучшее в такой модели — возможность для ученика наблюдать за работой мастера. Вот таких возможностей должно быть больше. Это вариант парного программирования. Особенно полезно для начинающего наблюдать за тем, чему особо не учат, например за отладкой. Можно заучить алгоритмы, но так не научишься отладке. А вот смотреть, как опытный программист делает что-то, о чем ты даже не подозревал, очень полезно.
Но мне кажется, эта модель раньше была популярна из-за нехватки материалов. Допустим, у ювелира есть строго определенное количество золота. Или, скажем, когда идет операция на сердце, оно всего одно — нужен лучший специалист, остальные будут на подхвате. С программированием все иначе. Есть множество компьютеров, клавиатур, не надо распределять ресурсы.
Сейбел: К вопросу о том, чему особо не учат: вы занимались наукой, теперь работаете в индустрии. Как вы считаете, компьютерные науки и промышленное программирование правильно взаимодействуют между собой?
Норвиг: Сложный вопрос. Я не думаю, что заниматься наукой — большая потеря времени: есть шанс узнать много нужного. Но вы не узнаете всего, что вам требуется для разработки или производства ПО. Мне кажется, программы в высшей школе медленно адаптируются к реальности. Кое-где есть подвижки, но в целом работать в команде учат мало. Да и этому подходу со сборкой из готовых кусков тоже не особо учат. Однако ребята как-то набираются всего этого, так что в общем дело обстоит неплохо. У нас в Google много масштабных облачных вычислений, параллельного программирования и тому подобного. Индустрия во всем этом заинтересована, однако учат этому редко. Так что высшая школа немного запаздывает, но все равно остается полезной.
Сейбел: Есть ли области, где ученые находятся на переднем крае, где программная индустрия еще не подобралась к новейшим методам?
Норвиг: Отчасти да, есть. Лучший, наверное, пример — проверка моделей, которой Intel не уделила достаточно внимания, и на отзыве ПО из-за найденной ошибки в умножении они потеряли много денег. Тогда они всполошились и пошли на поклон к ученым. Теперь проверка моделей обязательно входит во все их программы. Другой пример, пожалуй, чуть менее яркий — языки программирования. В этой сфере идет напряженная работа, но она мало отражается на новых языках. Операционные системы, в какой-то мере. Мы финансируем лабораторию RAD в Беркли с Дэйвом Паттерсоном и другими. У них есть хорошие идеи относительно надежности систем. Но это тот случай, когда у индустрии есть куда более серьезные проблемы. Не каждую из них удается решить, но поиски здесь идут более интенсивно, чем в университетах.
Сейбел: Значит, вы не считаете, что часть хороших идей, порожденных учеными, не используются просто из-за нежелания перемен? Ведь множество доморощенных PHP-программистов никогда не заинтересуются языком Haskell, пусть даже он будет удобнее?
Норвиг: Тут я настроен скептически. Будь у этого языка серьезные преимущества, его бы уже активно использовали. Не думаю, что у нас идеальный рынок информации, где все тут же бросаются применять новое оптимальное решение, но мы близки к этому. Ученые могут не видеть всю проблему, стоящую перед индустрией, и часть ее — проблема обучения. При множестве программистов, не знающих, что такое монада, не слушавших курса теории категорий, наступает разрыв.
Отчасти причина — в наследии прежних систем, которое нельзя просто так взять и отбросить, — необходим переход. Уверен, есть много областей, где промышленникам следовало бы смотреть дальше: если мы не можем осуществить переход сейчас, давайте хотя бы задумаемся, где мы будем через десять лет, в каком направлении нам двигаться.
Но мы хотим улучшений в тех областях, где это будет иметь большой резонанс. Во многих случаях языки нацелены на слишком низкий уровень, чтобы иметь тот эффект, на который рассчитывают их создатели. Человек говорит: «С моим новым прекрасным языком вот эти шесть строк кода заменяются двумя». Да, это неплохо: язык станет более эффективным, легче будет поддаваться отладке и обслуживанию. Но, возможно, ваш код — всего лишь часть большой системы. Настоящая головная боль начинается, когда надо ежедневно обновлять данные, рыться в Сети, добывать данные, переводить их в нужный формат. Нужно помнить, что вы решаете лишь небольшой подраздел громадной задачи, поэтому вам нужно преодолеть большой барьер, чтобы сделать переход на новый язык оправданным.