Даже в моей программе для умножения есть ошибка. Если вы запустите ее дважды, то при втором выполнении машина умножит A7h на 256 и прибавит произведение к уже полученному результату. Это связано с тем, что после первого выполнения программы в ячейке 1003h будет находиться значение 0. Когда вы запустите программу во второй раз, к этому значению будет прибавлено число FFh. Значение в ячейке 1003h будет отлично от 0, поэтому программа будет продолжать работу до тех пор, пока значение в этой ячейке не станет равным 0.
Наша машина может выполнять умножение, однако аналогичным образом она может выполнять и деление. Ранее я утверждал, что такая машина может использовать эти примитивные функции для вычисления квадратных корней, логарифмов и тригонометрических функций. Все, что ей требуется, — это оборудование для сложения и вычитания, а также способ реализации условного перехода для выполнения нужного кода. Любой программист скажет, что все остальное можно сделать с помощью программного обеспечения.
Разумеется, это программное обеспечение может быть довольно сложным. Существуют целые книги с описанием
Я уже несколько раз упоминал, что все компоненты для создания таких устройств появились более ста лет назад. Однако компьютер, описанный в этой главе, вряд ли мог быть собран в то время. Многие из концепций, использованных в его конструкции, не были очевидны и в середине 1930-х годов, когда разрабатывались первые релейные компьютеры. Их начали осознавать примерно в 1945 году. До этого люди все еще пытались создавать компьютеры на основе десятичных, а не двоичных чисел. Кроме того, компьютерные программы не всегда хранились в памяти — иногда они были закодированы на бумажной ленте. На заре компьютерной эры память была очень дорогой и громоздкой. Создание массива RAM емкостью 64 килобайт из пяти миллионов телеграфных реле казалось такой же абсурдной идеей, как и сейчас.
Пришло время рассмотреть все, что мы узнали, в контексте истории развития вычислений и вычислительной техники. Возможно, мы обнаружим, что нам не придется собирать этот сложный релейный компьютер. Как я упоминал в главе 12, на смену реле пришли такие электронные устройства, как вакуумные лампы и транзисторы. Вероятно, мы также найдем, что кто-то уже создал устройство, эквивалентное нашему процессору и памяти, умещающееся на ладони.
На протяжении всей записанной истории люди изобретали различные умные устройства и машины, стремясь хоть немного упростить процесс математических вычислений. Несмотря на то что человеческий вид, по-видимому, обладает врожденными способностями к вычислению, в этом нам часто требуется помощь. Нередко мы ставим такие сложные задачи, с которыми не можем справиться самостоятельно.
Развитие систем счисления можно считать самым ранним инструментом, помогавшим людям вести учет товаров и имущества. Представители многих культур, в том числе древние греки и американские индейцы, по-видимому, использовали для счета мелкие камешки и зерна. В Европе это привело к изобретению счетных досок, на востоке — счетов.
Несмотря на то что счеты обычно ассоциируются с азиатскими культурами, они, по-видимому, были завезены торговцами в Китай примерно в 1200 году н. э.
Никто никогда по-настоящему не получал удовольствия от умножения и деления, однако мало кто предпринимал какие-либо действия для решения этой проблемы. Шотландский математик Джон Непер (1550–1617) был одним из таких людей. Он изобрел логарифмы для упрощения счетных операций. Произведение двух чисел — это сумма их логарифмов. Так что, если нужно перемножить два числа, вы находите их в таблице логарифмов, складываете числа из таблицы, а затем ищете в таблице число, логарифм которого соответствует полученной сумме. Построение таблиц логарифмов на протяжении последующих 400 лет занимало одни величайшие умы, в то время как другие разрабатывали небольшие устройства, заменяющие такие таблицы. Долгая история логарифмической линейки началась со счетной линейки, созданной Эдмундом Гюнтером (1581–1626) и усовершенствованной Уильямом Отредом (1574–1660). История этой линейки практически завершилась в 1976 году, когда компания Keuffel & Esser презентовала последнюю произведенную линейку Смитсоновскому институту в Вашингтоне (округ Колумбия). Причиной ее заката послужило изобретение ручного калькулятора.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии