Несколько математиков в середине 1800-х годов работали над формальным определением логики (среди них особо выделялся Огастес де Морган). Однако именно Буль совершил настоящий концептуальный прорыв: сначала в короткой книге «Математический анализ логики, или Очерк исчисления дедуктивных умозаключений» (1847), затем в гораздо более объемном и амбициозном произведении «Исследование законов мышления, на которых основаны математические теории логики и вероятностей» (1854), которое кратко также называется «Исследование законов мышления». Буль умер в 1864 году в возрасте 49 лет от пневмонии, которую он подхватил, попав под дождь по дороге на лекцию.
Название книги Буля 1854 года говорит о постановке амбициозной задачи: поскольку мозг разумного человека мыслит, используя логику, то, найдя способ математического представления логики, мы получим математическое описание того, как работает мозг. Разумеется, в наше время такое в
Изобретенная Булем алгебра очень похожа на обычную. В обычной алгебре
Чтобы решить эту задачу, сначала преобразуем ее в арифметические выражения, используя четыре буквы, соответствующие количеству яблок, имеющихся у каждой из четырех женщин:
A = 3;
Б = 2 × A;
К = Б + 5;
Д = 3 × К.
Мы можем объединить эти четыре выражения в одно путем подстановки, а затем уже выполнить операции сложения и умножения:
Д = 3 × К;
Д = 3 × (Б + 5);
Д = 3 × ((2 × А) + 5);
Д = 3 × ((2 × 3) + 5);
Д = 33.
Имея дело с обычной алгеброй, мы следуем определенным правилам. Эти правила настолько укоренились в практике, что мы больше не думаем о них как о правилах и даже иногда забываем их названия. Однако любая форма математики подчиняется им.
Первое правило заключается в том, что сложение и умножение являются
A + B = B + A;
A × B = B × A.
Напротив, операции вычитания и деления
Сложение и умножение —
A + (B + C) = (A + B) + C;
A × (B × C) = (A × B) × C.
Наконец, умножение
A × (B + C) = (A × B) + (A × C).
Другой характеристикой обычной алгебры является то, что она всегда оперирует числами, например килограммами сыра, количеством уток, расстоянием, которое прошел поезд, или возрастом членов семьи. Гений Буля сделал алгебру более абстрактной, отделив ее от концепции числа. В булевой алгебре (именно такое название получила алгебра Буля) операнды относятся не к числам, а к
Поговорим о кошках. Кошки могут быть мужского и женского пола. Для удобства множество котов будем обозначать буквой
Мы также можем использовать другие буквы для обозначения окраса кошек: буквой
Наконец (по крайней мере, в нашем примере) кошки могут быть либо стерилизованными, либо нет. Давайте обозначим буквой
В обычной (числовой) алгебре операторы «+» и «×» используются для обозначения операций сложения и умножения. В булевой алгебре применяются те же символы «+» и «×», что может вызвать путаницу. Всем известно, как складывать и умножать числа в обычной алгебре, но как можно складывать и умножать
Дело в том, что в булевой алгебре мы фактически ничего не складываем и не умножаем. Вместо этого символы «+» и «×» означают нечто совершенно иное.
В булевой алгебре символ «+» — это
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии