Читаем Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть полностью

Теперь вам доступны и готовые решения, помогающие персонализировать свою маркетинговую коммуникацию примерно так же, как это делают Amazon и Netflix. Эти решения позволяют сравнительно мелким компаниям уравнять шансы и эффективно конкурировать с отраслевыми гигантами. Компании, идущие по этому пути, внимательно изучают пристрастия клиентов, затем адаптируют свои рекомендации им, в результате чего получают изрядное конкурентное преимущество. Нужные для этого решения уже есть, они не слишком дорогие и показывают хорошие результаты. Если вы их не используете, то для вас нет оправдания. Изучите то, что предлагают компании Audience Science, Proclivity и Netmining. Лично я предпочитаю Netmining (и совсем не потому, что основатель компании Тон Ван Парис – бельгиец).

Netmining собирает данные от потребителей, путешествующих по Сети, в режиме реального времени. Затем эти данные используются для прогнозирования того, в каких товарах мог бы быть заинтересован тот или иной клиент. Netmining автоматически показывает рекламный контент, соответствующий интересам клиента. (О том, каким образом рекламодатели могут постоянно следовать за вами и показывать вам рекламу джинсов именно того цвета, который вы ищете, – я расскажу в четвертой главе.)

Подобные инструменты, позволяющие предлагать нужному клиенту подходящий ему товар, способны обеспечивать невероятные результаты. Например, компания Fiat, когда начала работать с Netmining, заметила 350-процентный прирост в количестве клиентов и 500-процентное увеличение показателя эффективности рекламы.

Самое крутое в работе Netmining – это возможность визуализации результатов. Программа позволила сотрудникам Fiat легко увидеть, какие именно модели интересуют клиентов и насколько вероятна последующая покупка (демонстрацию программы можно найти на сайте www.netmining.com).

Итак, мы с вами успели обсудить, как понимать настоящих и потенциальных клиентов с помощью анализа данных, получаемых из трех источников исследований (качественных или количественных); данных о сделках (об этом было сказано во второй главе) или данных о поведении клиента в Интернете. Все эти источники данных у нас уже давно есть. Теперь давайте обратим внимание на другие интересные источники данных, которые появились совсем недавно.

<p>Данные, основанные на том, что пишут люди</p>

В наши дни люди много пишут. Они участвуют в работе форумов, меняют свой статус в социальных сетях, комментируют записи в чужих блогах и даже ведут собственные. Если хорошенько подумать, то мы поймем, что любой текст представляет собой набор данных (причем совершенно бесплатных). Было бы глупо этим не воспользоваться. Все, что вам нужно, – это простой инструмент, способный считывать содержание интересных для вас сайтов и копировать нужную вам информацию в базу данных. Сам по себе процесс сбора информации довольно прост, чего нельзя сказать о ее анализе. Чуть раньше я уже делился с вами парой примеров, как мы можем научить компьютеры воспринимать данные определенным образом. Все сравнительно просто, если речь идет о цифрах. Но когда вы просите компьютер изучить текст, то задача усложняется. При этом я не собираюсь говорить, что это невозможно.

На рынке имеется целый ряд программных продуктов, способных анализировать крупные объемы текста и снабжать нас информацией о том, какие вопросы обсуждают люди, скольким людям они интересны и даже что они чувствуют в отношении обсуждаемого. Вот пример, которым поделилась со мной компания Visible Technologies пару лет назад:

Я ненавижу, что Джордж У. Буш постоянно подвергается критике. Да, он делает ужасные грамматические ошибки – тоже мне, страшное обвинение! Зато он четко поддерживает правильную иммиграционную политику. При этом он творит какие-то странные дела в связи с приватизацией системы социального обеспечения. Не знаю, будут ли теперь голосовать за него ребята, воюющие в Ираке, но они делают то, что должны делать.

Ранние (читай, примитивные) программы для анализа текста считывали количество распознанных слов с положительной или отрицательной окраской, а затем делали заключение о негативной в целом окраске того или иной сообщения.

Проблема состояла в том, что, хотя программа распознавала слова правильным образом, она ошибалась с общей тональностью высказывания. Приведенный выше комментарий был расценен ей как в целом положительный.

Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес