Читаем Кибернетика или управление и связь в животном и машине полностью

Преобразование, определяемое выражением (3.72), называется преобразованием Гильберта; оно изменяет cos λω в sin λω и sin λω в —cos λω. Следовательно,

F(ω)+iG(ω)

есть функция вида

           (3.73)

и удовлетворяет требуемым условиям для log |k(ω)| в нижней полуплоскости.

Если теперь положить

 ,          (3.74)

то можно показать, что при весьма общих условиях функция K(s), определяемая формулой (3.68), будет обращаться в нуль для всех отрицательных аргументов. Таким образом,

           (3.75)

[c.145]

С другой стороны, можно показать, что 1/k(ω) записывается в виде

 ,          (3.76)

где значения Nn определены подходящим образом, и что при этом можно получить

           (3.77)

Здесь значения Qn должны удовлетворять формальному условию

           (3.78)

В общем случае будем иметь

 ,          (3.79)

а если ввести по образцу соотношения (3.68)

 ,          (3.80)

то

 .          (3.81)

Следовательно,

 .          (3.82)

Этот вывод мы используем для того, чтобы получить оператор предсказания в форме, связанной не со временем, а с частотой. [c.146]

Таким образом, прошлое и настоящее функции ξ(t, γ), или точнее «дифференциала» dξ(t, γ), определяют прошлое и настоящее функции f(t, γ), и обратно.

Если теперь А >0, то

           (3.83)

Здесь первый член последнего выражения зависит от области изменения dξ(τ, γ), в которой, зная лишь f(σ, γ) для σ≤t, сказать ничего нельзя, и совершенно не зависит от второго члена. Его среднеквадратическое значение равно

 ,          (3.84)

и эта формула дает все статистическое знание о нем. Можно показать, что первый член имеет гауссово распределение с этим среднеквадратическим значением. Последнее равно ошибке наилучшего возможного предсказания функции f(t+A, γ).

Само же наилучшее возможное предсказание выражается вторым членом в (3.83):

 .          (3.85)

Если теперь положим

           (3.86)

[c.147]

и применим оператор (3.85) к eiωt, получив

 ,          (3.87)

то найдем, подобно (3.81), что

           (3.88)

Это и есть частотная форма наилучшего оператора предсказания.

Задача фильтрации в случае временных рядов типа (3.34) тесно связана с задачей предсказания. Пусть сумма сообщения и шума имеет вид

 ,          (3.89)

а сообщение имеет вид

 ,          (3.90)

где γ и δ распределены независимо в интервале (0, 1). Тогда предсказуемая часть функции m(t+a), очевидно, равна

 ,          (3.901)

а среднеквадратическая ошибка предсказания равна

 .          (3.902)

Допустим, кроме того, что нам известны следующие величины:

 [c.148]

 

 

 

 

 

           (3.903)

 

           (3.904)

 

 

 

           (3.905)

[c.149]

Преобразование Фурье для этих величин соответственно равно

           (3.906)

где

           (3.907)

то есть

           (3.908)

и

 ,          (3.909)

где для симметрии пишем

 .

Теперь мы можем определить k(ω) из (3.908), как прежде определили k(ω) из (3.74). Здесь мы принимаем

 

В результате

           (3.910)

и

 .          (3.911)

Таким образом, наилучшее определение функции m(t) с наименьшей среднеквадратической ошибкой есть

 .          (3.912)

[c.150]

Сравнивая это с уравнением (3.89) и пользуясь рассуждениями, подобными тем, посредством которых было получено (3.88), заключаем, что оператор для m(t)+n(t), дающий «наилучшее» представление функции m(t+a), имеет при записи в частотной шкале следующий вид:

 .          (3.913)

Этот оператор служит характеристическим оператором устройства, которое в электротехнике называют волновым фильтром. Величина а есть фазовое отставание фильтра. Она может быть положительной или отрицательной; если она отрицательна, то а называется фазовым опережением. Прибор, соответствующий формуле (3.913), может быть построен с какой угодно точностью. Подробности его конструкции нужны более для инженера-электрика, чем для читателя этой книги. Их можно найти в соответствующей литературе[147].

Среднеквадратическая ошибка фильтрации (3.902) может быть представлена как сумма среднеквадратической ошибки фильтрации для бесконечного фазового отставания

 

 

           (3.914)

[c.151]

и другого члена

 ,          (3.915)

зависящего от фазового отставания. Мы видим, что среднеквадратическая ошибка фильтрации есть монотонно убывающая функция фазового отставания.

Другим интересным вопросом в случае сообщений и шумов, порождаемых броуновым движением, является скорость передачи информации. Рассмотрим для простоты случай, когда сообщение и шум независимы, т. е. когда

 .          (3.916)

Рассмотрим в этом случае функции

 ,          (3.917)

где γ и σ распределены независимо. Пусть нам известна сумма m(t)+n(t) в интервале (—А, А). Сколько у нас тогда информации об m(t)? Заметим, что, по эвристическому суждению, это количество информации не должно слишком отличаться от количества информации о функции

           (3.918)

которым мы располагаем, когда нам известны все значения выражения

 ,          (3.919)

где γ и σ имеют независимые распределения. Можно, однако, показать, что n-й коэффициент Фурье для выражения (3.918) имеет гауссово распределение, независимое от всех других коэффициентов Фурье, и что его [c.152] среднеквадратическое значение пропорционально величине

           (3.920)

Следовательно, в силу (3.09) полное количество информации об М равно

 ,          (3.921)

Перейти на страницу:

Похожие книги

100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука
Агрессия
Агрессия

Конрад Лоренц (1903-1989) — выдающийся австрийский учёный, лауреат Нобелевской премии, один из основоположников этологии, науки о поведении животных.В данной книге автор прослеживает очень интересные аналогии в поведении различных видов позвоночных и вида Homo sapiens, именно поэтому книга публикуется в серии «Библиотека зарубежной психологии».Утверждая, что агрессивность является врождённым, инстинктивно обусловленным свойством всех высших животных — и доказывая это на множестве убедительных примеров, — автор подводит к выводу;«Есть веские основания считать внутривидовую агрессию наиболее серьёзной опасностью, какая грозит человечеству в современных условиях культурноисторического и технического развития.»На русском языке публиковались книги К. Лоренца: «Кольцо царя Соломона», «Человек находит друга», «Год серого гуся».

Вячеслав Владимирович Шалыгин , Конрад Захариас Лоренц , Конрад Лоренц , Маргарита Епатко

Фантастика / Самиздат, сетевая литература / Научная литература / Ужасы и мистика / Прочая научная литература / Образование и наука / Ужасы