Здесь я не имею возможности говорить о всех бесконечно разнообразных методах, которые можно было бы придумать для выяснения того, через какое отверстие пролетел зарегистрированный электрон. Но каждый раз оказывается, что невозможно поставить свет таким образом, чтобы можно было, с одной стороны, сказать, через какое отверстие пролетает наш электрон, а с другой - не исказить картины распределения регистрируемых электронов, не нарушить характера интерференции. И так происходит не только со светом, а с чем угодно, чем бы мы ни пользовались. Просто это принципиально невозможно. Конечно, можно, если хотите, изобрести целый ряд методов обнаружения, и каждый из них будет показывать, что электрон пролетает либо через одно отверстие, либо через другое. Но если вы попытаетесь построить ваш прибор таким образом, чтобы при этом он еще и не влиял на движение электрона, вы добьетесь лишь того, что вновь не сможете сказать, через какое же отверстие пролетел электрон, и результаты ваших наблюдений вновь окажутся запутанными.
Когда Гейзенберг открывал законы квантовой механики, он заметил, что эти новые законы природы оказываются непротиворечивыми только в том случае, если можно принять, что наши экспериментальные возможности принципиально ограничены некоторым образом, хотя мы и не замечали этого ранее. Другими словами, в эксперименте нельзя добиться по желанию сколь угодно большой чувствительности. В связи с этим Гейзенберг предложил свой принцип неопределенности, который по отношению к описанному выше эксперименту выглядит следующим образом (Гейзенберг сформулировал его по-другому, но обе формулировки эквивалентны и от одной можно перейти к другой):
И еще никому не удалось обойти этот принцип. Уверен, что у вас просто чешутся руки, так вам хочется изобрести новый метод, позволяющий обнаружить, через какое отверстие пролетел электрон. Но после тщательного исследования любого из методов окажется, что он не годится. Вам покажется, что вы знаете, как это сделать, не влияя на электрон, но вы увидите, что всегда есть какая-нибудь загвоздка и что всегда различие в наблюдаемых картинах можно объяснить влиянием приборов, предназначенных для определения того, через какое отверстие пролетел электрон.
Это одна из основных характеристик природы, и она говорит нам кое-что обо всем. Если завтра найдут новую частицу, каон,- по правде говоря, каон уже найден, но ведь новую частицу нужно как-то назвать, так что назовем ее каоном, - я воспользуюсь каонами для того, чтобы при их помощи определить, через какое отверстие пролетит электрон. Я знаю заранее - по крайней мере я надеюсь, что это так, - вполне достаточно о свойствах этой еще не известной мне частицы, чтобы быть уверенным в том, что она не может сказать мне, через какое отверстие пролетел электрон, и не изменить при этом картины с интерференционной на безынтерференционную. Поэтому принципом неопределенности можно пользоваться как общим принципом, позволяющим предсказывать наперед многие характеристики неизвестных объектов. Вероятные свойства таких объектов не могут быть какими угодно.
Вернемся к нашему
утверждению А-
Физики научились обходить западни. Они взяли за правило думать следующим образом. Если у вас есть прибор, позволяющий определять, через какое отверстие пролетел электрон (а такой прибор можно сделать), то вы можете утверждать, что он пролетает либо через одно отверстие, либо через другое. Так оно и происходит: когда вы следите за электроном, он пролетает либо через одно отверстие, либо через другое. Но если у вас нет такого прибора, то вы и не можете сказать, что он пролетает либо через одно отверстие, либо через другое. (Вернее, всегда можно сказать, что это так, если вы на этом сразу остановитесь и не станете пытаться сделать из этого какие-либо выводы. Физики же предпочитают просто не говорить этого, вместо того чтобы говорить и не делать никаких выводов.) Исходить же из того, что электрон пролетает либо через одно отверстие, либо через другое, когда вы этого не видите, значило бы основывать свои предсказания на ошибочной предпосылке. Вот тот логический канат, на котором приходится балансировать, если мы хотим заниматься объяснением явлений природы.