Я собираюсь рассказать вам, как ведет себя Природа. И если вы просто согласитесь, что, возможно, она ведет себя именно таким образом, то вы увидите, что это очаровательная и восхитительная особа. Если сможете, не мучайте себя вопросом "Но как же так может быть?", ибо в противном случае вы зайдете в тупик, из которого еще никто не выбирался. Никто не знает, как же так может быть.
Итак, позвольте мне охарактеризовать поведение электронов или фотонов с типичной для квантовой механики точки зрения. Я буду пользоваться и сравнениями, и противопоставлениями. Если я попытаюсь ограничиться одними аналогиями, у нас ничего не выйдет. Здесь совершенно необходимо указывать не только на сходство с чем-то всем нам знакомым, но и на коренные отличия от всего нам знакомого. Поэтому я буду проводить сравнение и противопоставление сначала с поведением частиц, о которых я буду рассказывать на примере пуль, а затем с поведением волн на примере морских волн. Я собираюсь придумать один эксперимент и рассказать вам сначала, что получилось бы при таких условиях, если бы у нас были частицы, затем - что было бы, если бы это были волны, и, наконец, что происходит на самом деле в системе, где есть электроны или фотоны. Я разберу только этот эксперимент, который специально придуман таким образом, чтобы охватить все загадки квантовой механики и столкнуть вас со всеми парадоксами, секретами и странностями природы на все сто процентов. Оказывается, любой другой случай в квантовой механике всегда можно объяснить, сказав: "Помните наш эксперимент с двумя отверстиями? Здесь - то же самое". Вот я и собираюсь рассказать вам об опыте с двумя отверстиями. Именно в нем заключена основная загадка. Я не собираюсь ничего избегать. Я просто снимаю покровы с природы, с ее наиболее элегантных и трудноуловимых форм.
Начнем с пуль (рис. 30). Пусть у нас имеется источник пуль, пулемет например, и перед ним установлен экран с отверстием, пропускающим пули, причем сам экран - это броневой щит. Теперь на большом расстоянии от первого щита поставим другой броневой щит с двумя отверстиями - те самые два знаменитых отверстия. Об этих отверстиях я буду говорить много раз, а поэтому назовем их отверстиями 1и 2. Можно представить себе, что отверстия круглые, а на рисунке показаны лишь их сечения. На большом расстоянии от второго щита поставим еще и третий, позволяющий устанавливать в разных местах детектор (для пуль это будет просто ящик с песком), в котором пули застрянут, после чего их можно будет сосчитать.
Теперь я буду проделывать такие опыты: я буду устанавливать свой детектор, или ящик с песком, в разных точках третьего щита, а затем подсчитывать, сколько пуль попадет в него. При этом я буду измерять расстояние между ящиком и какой-нибудь другой точкой на третьем щите, назову это расстояние хи постараюсь выяснить, что происходит, если наш ящик передвигать вверх и вниз. Но прежде всего я хотел бы кое-что изменить, заменив настоящие пули идеализированными. Во-первых, будем предполагать, что пулемет сильно дрожит и качается и, следовательно, пули летят не только в одном, но и в других направлениях. К тому же они могут рикошетировать от краев отверстий в броневых щитах. Во-вторых, мы договоримся, хотя это не так уж и важно, что у всех пуль одинаковая энергия и скорость. Но самая важная идеализация, благодаря которой наши пули совсем не будут похожи на реальные, такова: мы будем предполагать, что пули абсолютно не разрушаются, так что в нашем ящике мы найдем не куски свинца от пули, расщепившейся надвое, а целую пулю. Представьте себе неразбивающиеся пули или очень твердые пули и мягкую броню.
Первое, что мы заметим в нашем опыте с пулями, это то, что все здесь происходит дискретными порциями. Например, энергия, поглощенная мишенью. Она может увеличиться только скачком на величину энергии дной пули:
Теперь я хочу выяснить, сколько пуль попадает в разные участки мишени в среднем за какой-нибудь период времени. Подождем, например, в течение часа, подсчитаем число пуль, попавших в наш ящик с песком, и усредним его. Теперь возьмем среднее число пуль, попавших в ящик за час, и назовем его вероятностью попадания, так как им определяется вероятность того, что, пройдя через щель, пуля попадает в какой-то определенный ящик.