Читаем Характер Физических Законов полностью

Поиски законов физики - это вроде детской игры в кубики, из которых нужно собрать целую картинку. У нас огромное множество кубиков, и с каждым днем их становится все больше. Многие валяются в стороне и как будто бы не подходят к остальным. Откуда мы знаем, что все они из одного набора? Откуда мы знаем, что вместе они должны составить цельную картинку? Полной уверенности нет, и это нас несколько беспокоит. Но то, что у многих кубиков есть нечто общее, вселяет надежду. На всех нарисовано голубое небо, все сделаны из дерева одного сорта. Все физические законы подчинены одним и тем же законам сохранения.

<p>Лекция 4.</p><p>Симметрия физических законов</p>

Для человеческого разума симметрия обладает, по-видимому, совершенно особой притягательной силой. Нам нравится смотреть на проявление симметрии в природе, на идеально симметричные сферы планет или Солнца, на симметричные кристаллы, на снежинки, наконец на цветы, которые почти симметричны. Однако сейчас мне хотелось бы поговорить не о симметрии предметов, а о симметрии самих законов физики. Что такое симметрия предмета - понять легко, но может ли быть симметричным физический закон? Нет, конечно, но физики получают особое удовольствие от того, что берут самые обыденные слова и используют их для обозначения совсем других понятий. В нашем случае некоторые свойства физических законов казались им очень похожими на те свойства предметов, которые определяют их симметрию, и физики стали говорить о симметрии физических законов. Вот о ней-то и пойдет здесь речь.

Что такое симметрия? Посмотрите на меня, и вы убедитесь, что моя левая половина симметрична правой, по крайней мере внешне. Точно так же или несколько иначе симметрична ваза. Что все это значит? Симметричность моего тела означает, что если перенести все, что у меня есть, справа налево и наоборот, т.е. если поменять эти две стороны местами, то я буду выглядеть точно так же, как и раньше. Особого вида симметрией обладает квадрат - его можно повернуть на 90°, и он снова будет выглядеть так же, как и прежде. Известный математик Герман Вейль (1885-1955) предложил прекрасное определение симметрии, согласно которому симметричным называется такой предмет, который можно как-то изменять, получая в результате то же, с чего вы начали. Именно в этом смысле говорят о симметрии законов физики. При этом мы имеем в виду, что физические законы или способы их представления можно изменять так, что это не отражается на их следствиях. Этим свойством физических законов мы и займемся в данной лекции.

Простейшим примером симметрии такого рода - и вы сразу поймете, что это совсем не симметрия правого и левого, - может служить симметрия относительно пространственного переноса. Вот что мы имеем в виду. Если построить любую установку и при ее помощи поставить какой-нибудь опыт, а затем взять и построить точно такую же установку для точно такого же эксперимента с точно таким же объектом, но в другом месте, не здесь, а там, т.е. просто перенести наш опыт в другую точку пространства, то окажется, что во время обоих опытов происходит в точности одно и то же. Конечно, это утверждение не нужно понимать слишком упрощенно. Если бы я на самом деле построил здесь, где я сейчас сижу, какую-нибудь установку, а затем попытался перенести ее на 6 м влево, то она вошла бы в стену, со всеми вытекающими отсюда последствиями. Поэтому, говоря о симметрии относительно пространственных переносов, необходимо учитывать все, что играет в эксперименте существенную роль, и переносить все это вместе с установкой. Возьмем, например, какую-нибудь систему с маятником и попробуем перенести ее на 20 тысяч миль вправо. Ясно, что система не будет работать правильно, так как колебания маятника зависят от притяжения Земли. Но если представить себе, что вместе с установкой я переношу и нашу планету, то система будет работать по-прежнему. В том-то и дело - нужно переносить сразу все, что имеет хоть малейшее значение. Это правило звучит довольно нелепо. В самом деле, можно просто перенести экспериментальную установку, а если она не заработает, сказать, что мы перенесли еще не все, - и вы оказываетесь правы и в том и в другом случае. Но на самом деле это не так, ибо вовсе не очевидно, что мы обязательно будем правы. Интереснейшее свойство природы как раз и заключается в том, что всегда удается перенести достаточно материала, чтобы установка вела себя, как и раньше. А это уже не пустые слова.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука