Что же касается вопроса о классификации функций, которая только и может внести логический стройный порядок в этот отдел дифференциального исчисления, то и этого вопроса в данном месте касаться не стоит. Вопрос о классификации функций отнюдь не такой легкий, как это представляют себе математические руководства. Легкость достигается тем, что обычно перечисляют только простейшие и легчайшие функции и отбрасывают более сложные, а потом начинают вводить их без всякого предупреждения.
Так, неизвестно, в каком месте надо излагать гиперболические функции. Тригонометрические функции хотя и излагаются сейчас же после дифференцирования «алгебраических» функций, но неизвестно почему. Неизвестно также, что, собственно, такое «тригонометрические» функции. Обычное определение их как отношения определенных линий к радиусу круга—слишком внешнее определение; оно в сущности ничего не говорит. Уже одно выражение их при помощи числа е в известных формулах Эйлера указывает на полную их загадочность и таинственность; и не так–то просто найти их вполне существенное определение. Эллиптические функции справедливо отнесены в отдел теории функций комплексного переменного. Но положение самого этого отдела в системе анализа совершенно неопределенно. Казалось бы, естественно было бы излагать функции комплексного переменного вслед за рациональными и иррациональными функциями, поскольку само понятие комплексной величины есть неограниченное завершение понятия величины вообще. Тем не менее ни в дифференцировании, ни в интегрировании функций обычно этих функций не помещают, а помещают их почему–то в отдел «аналитических» функций, причем опять невозможно разобрать, что такое аналитические функции. С одной[230] стороны, аналитические функции комплексного переменного поставлены в ближайшую связь. С другой стороны, оказывается, что аналитические — это все вообще функции (так как аналитические—те, которые дифференцируемы). И т. д., и т. д., и т. д.
Вся эта неразбериха, не свидетельствующая о логической силе математиков, требует кропотливого анализа, который невозможно провести здесь, не удаляясь далеко в сторону, хотя только логически стройная классификация функций и могла бы внести порядок и последовательность в рассматриваемый отдел дифференциального (и соответственно—интегрального) исчисления. Сюда же относится, конечно, дифференцирование неявных функций, нахождение частных производных и производных высшего порядка. Это естественно вытекает из самого понятия дифференцирования.
Второй большой отдел дифференциального исчисления—это учение о рядах. Положение этого отдела в системе анализа— вполне специфическое. Ряды, конечно, нельзя помещать где попало. Логическое место их определяется тем основным обстоятельством, что ряд представляет собой инобытие производной. Если производная является образом пребывания функции в инобытии, то ряд является образом пребывания самой производной в инобытии.
Если производная—тезис, то ряд есть антитезис или, вернее, такой антитезис, который воплощает в себе в инобытийном[231] порядке тезис, производную. Чтобы это понять с полной четкостью, необходимо проанализировать диалектически хотя бы один какой–нибудь ряд. Для такого примера мы и возьмем простейший ряд—ряд Маклорена.
Этот ряд—
состоит из двух элементов, вдвинутых один в другой, — именно из ряда последовательно данных производных, начиная с самой функции при нулевом значении аргумента, —
f(0),f',f",f"', …
и из разложения в ряд ех—
Что такое ряд производных, у которых последовательно повышается порядок? Производная есть, как мы видели, закон инобытия той или иной идеальной взаимозависимости. Производная от этой производной, или производная второго порядка, есть переход этого самого закона в инобытие. Производная третьего порядка есть еще новый инобытийный закон этого второго закона. И т. д. Ясно, стало быть, что если производная есть инобытие функции, то ряд производных последовательно повышающегося порядка есть инобытие самого перехода функции в инобытие, инобытие самого становления, инобытийное становление становления функции в инобытии, отрицание отрицания функции в инобытии. Переходя в инобытие и порождая из себя производную, функция отрицает себя. Но, продолжая неизменно дробить этот свой переход в инобытие и тем порождать производные все более и более высокого порядка, функция отрицает свое отрицание, исчерпывает свое отрицание и тем стремится к новому утверждению — к утверждению себя в инобытии не только как становящейся, но и как ставшей.