В точке [b ] функция указывается тем пределом, к которому стремятся значения любого ряда чисел, стремящихся к пределу. Если Говоря о том, как определяется непрерывность в математике, стоит привлечь рассуждение Дедекинда о сечениях в области вещественных чисел, с которым мы уже столкнулись выше, в [§ 60.7]. Аксиома непрерывности вещественных чисел гласит, как мы помним, следующее. Пусть мы имеем две области вещественных чисел А и 5, о которых известно, что каждое вещественное число принадлежит или к А, или к В и что всякое число а из А меньше всякого числа b из В. Называя эту границу, делящую область всех вещественных чисел, разделом или сечением, получаем следующую аксиому непрерывности вещественных чисел: сечение Дедекинда в области вещественных чисел определяет всегда одно, и только одно, вещественное число [с] так, что всякое [а < с ], всякое [b > с]. Сразу как будто бы не видно тождество этой аксиомы непрерывности с развитым у нас учением о непрерывности. Но отдадим себе отчет в том, что значит эта аксиома. Тут имеется в виду та самая диалектика границы, которая развивается в общей диалектике. В общей диалектике доказывается, что 1) граница есть часть ограниченного и что 2) граница в то же время есть часть ограничивающего, т. е. что граница отличается от ограниченного и ограничивающего и граница тождественна с тем и другим. Это обеспечивает для границы и способность ее отделять одну область от другой, и в то же время незанимаемость ею никакого специального места, которое бы имело хоть какие–нибудь размеры. Такую границу, или сечение, можно провести в любом месте общей сферы вещественных чисел, и во всяком таком месте все числа, примыкающие с одной стороны, подходят к этой границе настолько близко, что вполне сливаются с нею, равно как и все числа, примыкающие с другой стороны, тоже подходят к ней настолько близко, что вполне сливаются с нею. Это строение сферы вещественных чисел и называется непрерывностью. Существует только одна и единственная точка, разделяющая обе сферы чисел. И если бы общая сфера вещественных чисел была бы прерывна, то граница, отделяющая здесь одну область от другой, отнюдь не везде была бы равна точке. В местах разрыва эта граница имела бы то или иное протяжение, которое измерялось бы уже линейными мерами, а не оставалось бы просто точкой, не имеющей ни одного измерения. Теперь спросим себя: можно ли утверждать существование раздела Дедекинда и, стало быть, можно ли утверждать непрерывность вещественных чисел, если мы не будем знать ничего о количественном значении чисел а и b, входящих в ту или иную область чисел А и Совершенно понятно [178], что общая линия, символизирующая нарастание вещественных чисел при передвижении слева направо, должна быть здесь еще раз перекрыта новым слоем исчисления, который бы показал, что реальные количественные значения отдельных ее точек могут приближаться друг к другу как угодно близко, вплоть до полного слияния. Стало быть, оба основные момента, входящие в понятие непрерывности, здесь налицо — алогическое становление и определенным образом уравновешенная противоположность внутреннего и внешнего. То же самое необходимо сказать и о той теореме, т. н. теореме включения, которая является прямым выводом из аксиомы непрерывности. Пусть нам даны интервалы прямой так, что они оказываются вложенными один в другой, причем длины этих интервалов уменьшаются как угодно много и становятся меньше всякой любой заданной величины. В таком случае и возникает теорема включения: существует всегда одна, и только одна, точка, которая принадлежит всем интервалам одного включения. Интервалы включения стремятся к этой точке. Здесь еще виднее то перекрытие, которому подвергается данная линия, когда мы укладываем на ней все меньшие и меньшие интервалы. Из этого перекрытия ясно и само доказательство этой теоремы. Доказательство это заключается в том, что если бы было две таких точки включения, а не одна, то длина всех интервалов не могла бы быть меньше расстояния между этими точками или в крайнем случае равнялась бы ему, а мы условились, что длина интервала может стать меньше любой заданной величины. Все время, значит, идет разговор, во–первых, об определенной линии, а во–вторых, о ее новом перекрытии, и, в–третьих, устанавливается определенное отношение между тем и другим. Первое, конечно, есть внутренний остов для второго, являющегося чем–то внешним и, отвлеченно рассуждая, даже необязательным; третье же есть специальное тождество первого и второго. Все три момента разыгрываются, кроме того, всецело в сфере чисто алогического становления (в данном случае бесконечно дробящихся интервалов). 6. Три категории — постоянная величина, переменная величина и непрерывная величина — освещены нами достаточно для наших целей. Все они определены как синтетическое тождество внутреннего числового содержания и его внешнего фактического осуществления, в чем их полная аналогия с иррациональным числом. И все они являются не чем иным, как стихией алогически становящейся отрицательности, рассмотренной в свете иррационального числа, или — иррациональным числом, рассмотренным в свете алогически становящейся отрицательности. Наметили мы и между этими тремя категориями определенное взаимоотношение. Они связаны между собою как диалектическая триада, в которой постоянная величина, являясь тезисом, полагает собою упомянутое тождество как «неподвижное», т. е. как различно–самотождественное бытие, переменная же, являясь антитезисом, дает это тождество как подвижное инобытие, точнее, как устойчиво подвижное инобытие; и наконец, непрерывная величина, являясь синтезом бытия и инобытия в некоем новом становлении, утверждает общую определенную единичность внутренней дробности и внешней отрицательности как синтез постоянного и переменного. В точных диалектических формулировках эти три категории имеют следующий вид. Общей сферой для них является алогически становящаяся отрицательность, рассмотренная как иррациональное число, т. е. как тождество внутренней дробности и внешнего алогического становления, или, наоборот, — это самое тождество, рассмотренное как алогически становящаяся отрицательность. Отсюда и — наши формулы. Величина [постоянная ] есть тождество внутренней дробности и внешней алогически становящейся отрицательности, данное как алогически становящаяся отрицательность— в своем (неподвижном) самотождественном различии. Величина [переменная ] есть тождество внутренней дробности и внешней алогически становящейся отрицательности, данное как алогически становящаяся отрицательность в своем (подвижном покое]. Величина [непрерывная) есть тождество внутренней дробности и внешней алогической отрицательности, данное как новое алогическое [становление]. Или: непрерывная величина есть тождество внутренней дробности и внешней алогической отрицательности, данное как синтез постоянной и переменной величин. Короче: постоянная величина есть иррациональность в своем самотождественном различии, переменная—иррациональность в своем подвижном инобытии; непрерывная величина — иррациональность как становящийся синтез (или определенная единичность) постоянной и переменной величин. Все эти определения и введенные для них термины надо понимать исключительно так, как это было разъяснено в предыдущем анализе. Всякое малейшее отклонение от принятого выше понимания терминов способно превратить все эти формулы в полную бессмыслицу. Так, нельзя «отрицательность», «отрицание» понимать чисто арифметически или алгебраически. Отрицание здесь есть диалектическое инобытие утверждения, а не просто действие, которое в математике обозначается знаком минуса. Для подчеркивания этого обстоятельства в формулу введены слова «алогическое» и «становящееся», хотя, строго говоря, достаточно было бы употреблять только один из этих терминов. Нечего, далее, удивляться, например, тому, что момент «дробности» введен в определение постоянной величины. Постоянство как противоположность изменчивости содержит в себе последнюю на стадии нуля, т. е. потенциально. А всякая изменчивость возможна только там, где имеется частичная проявленность, т. е. некое дробящееся и, следовательное, дробное основание. Так же и «бытие» нужно понимать в этих формулах так, как мы понимаем эту категорию в общей диалектике: бытие здесь — твердо полагаемое нечто, устойчивое или, вернее, пока еще не перешедшее от чистой положенности ни в какие иные качественные обстояния. Это именно и закрепляет алогическое становление на одной точке и превращает его длительную стихию в неподвижную значимость постоянного количества. И т. д. и т. д. Разъяснять эти термины во второй раз не стоит. Нужно только напомнить, что эти термины взяты в строго определенном и специфическом значении. А даже если лучше было бы употребить какие–нибудь другие термины, то от этого существо дела не изменилось бы. Важна в конце концов не словесная оболочка термина, а его внутренняя смысловая значимость. 7. Три изученные категории возникли как рассмотрение в свете цельной иррациональности — первого момента, входящего в иррациональное число, а именно в свете отрицания. Но мы знаем, что иррациональность есть синтез внешнего отрицания и внутренней дробности. Последняя также может быть рассмотрена в свете иррациональности. И что же получится из этого? Надо, стало быть, взять дробное число, но — погрузить его в стихию иррационально становящегося тождества постоянства и изменчивости. Когда мы сделали вывод трех указанных категорий, мы погружали иррациональность в чистое становление; алогически становящаяся отрицательность застигала там чистую иррациональность и превращала ее в непрерывно текучую форму становления, т. е. в непрерывность. Теперь, наоборот, выступает не внешнее алогическое становление на первый план, но внутренняя дробность, и она является здесь главным предметом внимания. Но в иррациональности главное — это определенным образом данное тождество внутреннего и внешнего. При выводе трех разнообразных категорий это тождество внутреннего и внешнего дано внешними и притом алогически становящимися средствами. Теперь же мы должны дать это тождество внутреннего и внешнего внутренними и притом дробно осмысленными средствами. В первом случае все отдельные моменты текучей иррациональности сливаются в одну непрерывную массу, во втором же случае те или иные (а может быть, и все) моменты текучей иррациональности разрываются ввиду привхождения дробящей силы внутреннего числового содержания. В первом случае мы, придавая те или иные количественные значения данной величине, убеждаемся, что любая точка становления этой величины способна подвергнуться той или иной количественной значимости без риска прервать равномерное протекание самой величины в смысле возрастания или убывания. Мы сравниваем тут возрастание или убывание величины с самой величиной и убеждаемся, что величина продолжает везде действовать так же, как и раньше. Иная картина — в новом случае, когда привходит внутренняя дробность. Тут тоже продолжается непрерывное протекание величины в том или ином направлении. Но тут, начиная сравнивать эти нарастающие значения величины с самой величиной, мы находим, что отнюдь не всегда и не везде эти значения обладают способностью соответствовать равномерному действию самой величины. Сама величина, т. е. ее внутреннее содержание, дробна; и потому надо, чтобы эта дробность как–нибудь отразилась на непрерывном протекании величины. Должна получиться дробная, т. е. частичная, непрерывность, а не та полная, которой раньше соответствовала в качестве внутреннего числового содержания целость. Но что такое частичная непрерывность? Частичная непрерывность есть прерывность. В прерывной величине мы и находим такую иррациональность, которая дана как внутренняя дробность числового содержания. В прерывной величине, как и в непрерывной, имеется обычная антитеза внутреннего и внешнего, синтезированная как рациональное и как иррациональное число. Но когда эта антитеза залита внешне–становящимся материалом, тогда в ней не проявляется никакое начало, которое бы вносило ту или иную раздельность или расчлененность в образующийся общий непрерывный поток становления величины. Когда же начинает выступать дробность вместо алогического протекания, непрерывность начинает внутренне различаться и разделяться и — переходит в свою противоположность, в величину прерывную. Таким образом, прерывная величина есть тождество внутренней дробности и внешней алогически становящейся отрицательности, данная как внутренняя дробность. Или короче: прерывная величина есть иррациональность, данная как внутренняя дробность. Можно и здесь расчленить понятие на три последовательных диалектических этапа, отграничивая непрерывность сначала извне и тем полагая для нее прерывные границы, потом — внося дробление вовнутрь непрерывности и тем полагая различные границы внутри нее самой и, наконец, — давая чистое и общее понятие дробной непрерывности, или прерывности вообще. В первом случае мы получим непрерывность в определенных пределах, т. е. между определенными точками; во втором — непрерывность в одной точке и в третьем, наконец, — прерывную величину в общем и собственном смысле слова. Кажется, примеры прерывной величины для демонстрации вышеизложенного понятия прерывности излишни. Но все–таки возьмем какую–нибудь прерывную функцию и отметим на ней указанные нами моменты этой категории. Пусть имеется функция tga; при возрастании от 0° до 90° тангенс возрастает от 0 до +. При дальнейшем[179] увеличении от 90 до 180° тангенс изменяется от — до 0. В моменте, когда угол равняется 90°, происходит разрыв тангенса и он [от] + мгновенно переходит к — Имея это в виду, спросим себя: что нужно для осуществления этого разрывного момента и какие категориальные моменты его конструируют? Нужно, во–первых, чтобы речь касалась становления и, во–вторых, не просто становления, но становящегося а, [что] должен быть переменной величиной. В–третьих, этот а не просто есть переменная величина, но он должен и фактически меняться, причем это изменение есть опять–таки не просто изменение, но изменение, в котором бы целиком воплощалось становление как таковое, т. е. изменение непрерывное. И вот, наконец, когда непрерывно изменяется от 0 к 90°, мы, наконец, вдруг замечаем это удивительное[180] явление, что данная функция tga разрывается и лишается своей непрерывности. От чего это зависит? Это зависит исключительно от внутреннего чисто смыслового содержания тангенса, который именно потому, что он — тангенс, производит разрыв в точке 90°. Стало быть, необходимо, в–четвертых, чтобы внешнее непрерывное изменение получало отдельную структуру от внутренней значимости этого tga. В данном случае эта внутренняя значимость действует как <…> и — в определенной точке разрывает протекание tga. На этом примере совершенно ясно участие в категории прерывной величины таких моментов, как становление, изменение, непрерывность, внутреннее и внешнее и синтез внутреннего и внешнего. Между прочим, на этом примере с тангенсом прекрасно видно то диалектическое понимание дробности, которое мы употребляем здесь и употребляли раньше. Дробность у нас не есть просто арифметическое понятие. Дробность есть целость, данная в своем инобытии так, что имеется только это инобытие целости, а не сама целость. В этом смысле тангенс есть дробящая и дробящаяся стихия, потому что ее внешний результат приводит к разрыву и дроблению цельного, структуры становления. Если мы рассмотрели первый момент иррационального числа (становящуюся отрицательность) в свете самого иррационального числа (и получили три особые категории — постоянной, переменной и непрерывной величины), если мы, далее, рассмотрели второй момент иррациональности (внутреннюю дробность) в свете самой иррациональности (и получили еще новую категорию— прерывной величины), — то теперь необходимо рассмотреть само иррациональное число (как синтез внешней алогически становящейся иррациональности и внутренней дробности) в свете самой же иррациональности. Что значит рассмотреть иррациональность в свете самой иррациональности, т. е. рассмотреть ее как таковую, в ее существе, в ее первоначальном и чистейшем существе? Это значит рассмотреть самый исток иррациональности, определить ее исходную сущность, найти самый ее перво–принцип. Иначе можно сказать так. Поскольку эта новая структура есть синтез, она должна быть границей для первого момента, для тезиса триады. Граница должна дать первоначальное очертание сущности, отразить[181] ее смысловую природу, ясно отличить ее от всего, что не является ею. Найти перво–принцип—это и значит уметь провести границу или быть в состоянии сказать нечто, отличивши это нечто от всего прочего. Так вот и возникает вопрос: где же нам искать самый перво–принцип иррациональности и, стало быть, где же находится смысловая граница, определяющая эту иррациональную сущность и дающая ее определенную и специфическую значимость? Где эта смысловая законченность иррациональности и как называется этот новый синтез внутренней дробности и внешней алогически становящейся иррациональности, синтез, уже освобожденный от самой иррациональной текучести и являющийся лишь ее перво–принципом, ее внутренней закономерностью и исходным первоначалом? Этот перво–принцип и эта внутренняя закономерность иррациональности есть предел, вернее, то, что в математике называется пределом. 2. Эта фундаментальнейшая категория всей математики требует четкого разъяснения, и тут диалектика должна показать всю свою силу и основательность. Иррациональность имеет свой первоисток в пределе. Предел — внутренний исходный перво–принцип иррациональности. Чтобы усвоить это учение об иррациональности, надо произвести ряд отграничений. а) Предел не есть просто голая и абстрактная идея числа, изолированно пребывающая сама в себе. Если взять ряд, члены которого образованы по типу n=1- <...> = 1 — 1. Равным образом, если взять ряд[183] n = 1 — то при возрастании до бесконечности мы получаем в качестве предела 0. Эта единица и этот нуль, являющийся пределами двух последовательностей, сами по себе взятые, отнюдь не есть пределы. Смысл единицы есть просто единица, и ни о каком пределе тут нет ровно никакой речи. Так же и относительно нуля. Пределом 0, 1 и всякое другое число становится не само по себе, не в силу своей чисто абстрактной значимости, но исключительно лишь в силу того, что оно является некоей притягивающей силой для других величин, т. е. в силу того, что оно перестает быть изолированным и голым числом, но заряжается некоей числовой заданностью и как бы издали привлекает к себе целую бесконечность определенным образом расположенных величин. Так, в первом примере единица, являясь пределом последовательности, тянет к себе эту последовательность, притягивает к себе наподобие некоего магнита целую массу каких–то своеобразных математических точек. И об этом мы знаем не просто из числового значения единицы (не имеющего, понятно, никакого отношения к последовательности или пределу), но из характера той смысловой сферы, в которую погружена эта единица. Значит, в определение предела мы обязаны внести момент закономерности протекания последовательности, постепенно осуществляемой по мере дальнейшего распространения этого протекания. Предел есть всегда та или иная размерность, расположенность и упорядоченность процесса, динамический смысл и закономерность построения последовательности. Предел не есть просто ординарное голое число или величина, но он есть смысловой первоисток числового становления. Отсюда начинает становиться понятным, что предел есть в некотором роде иррациональность, рассмотренная как иррациональность же, т. е. он есть иррациональное становление—с точки зрения не просто своего протекания и текучести, но с точки зрения смысловой закономерности этого становления. Это есть сомкнутая и неразвернутая закономерность числового становления, смысловая заряженность этого становления, методический его пер–во–принцип — и чистая возможность. Но точно так же предел не есть и та или иная приближенная величина, возникающая на его основе. Эта приближенная величина не есть самый предел, но именно лишь приблизительное выражение предела. Если взять число , то это не есть ни 3,14, ни 3,145, ни 3,1415 и т. д. Никакое приближение, как бы оно далеко ни шло, не есть самый предел, но лишь приближение к пределу. Отдельные приближенные выражения предела суть конечные, изолированные количества, никуда не стремящиеся и ни для чего не являющиеся целью и предельной причиной. Предел виртуален, или, что то же, предел есть смысловая цель и задание для некоего числового становления. Каждое же отдельное выражение предела ровно ничего не говорит о самом пределе и, само по себе взятое, ничем принципиально не отличается ни от какого любого числа вообще. Если число, точно выражающее предел, например е, не есть обыкновенное число, но указывает лишь смысловой перво–принцип и потенциальную закономерность становящегося ряда, то число, приблизительно выражающее предел, также есть особое число, если его связывать с пределом, а именно число, стремящееся к пределу, притягивающееся к пределу. Само по себе число 2,1718 не есть предел, выражаемый знаком е, но если рассматривать его в контексте предельных отношений, то оно влечется к пределу так же, как предел является для него неким смысловым магнитом. Итак, предел не есть ни число, точно его выражающее (если брать его само по себе, т.е. как просто число, как таковое), ни число, приближенно его выражающее (если брать его тоже в изолированном виде), ибо предел есть смысловым образом заряженный перво–принцип становления, а не отдельные становящиеся моменты, хотя бы и взятые в самом конце становления. c) Вполне понятно и то, что предел не есть само становление. Когда мы имеем числовую последовательность, то это есть становление к пределу, но не самый предел. И тут также нельзя оперировать изолированными величинами, хотя бы даже это были и все величины, относящиеся к данной области. Взять все моменты, из которых состоит становление данного ряда, совсем не значит взять предел этого ряда. Это будет ряд, которому свойствен какой–то предел, но не самый предел. Тут также не хватает смысловой заряженности и потенциальной [осмыс ]ленности, и тут также это заменено изолированной структурой (ибо становящийся ряд, взятый как таковой, тоже есть некая неподвижность); становится становящееся, но само становление не становится, оно неподвижно, как и огонь жжется, но огненность есть отвлеченное понятие, оно не огонь и не жжется. Нужно брать не становление, но его исходную закономерность, развертывающуюся в определенной последовательности, потенциальную упорядоченность становления. d) Не поможет тут также и антитеза внутреннего и внешнего, ибо эта антитеза слишком обща и она входит уже в простое рациональное число, не говоря уже об иррациональности. Предел не есть только внутреннее для приближенного выражения предела как для чего–то внешнего. Конечно, такое <…> вполне правильно, и предел есть на самом деле нечто внутреннее, по отношению к чему всякое приближенное его выражение оказывается чем–то внешним. Но это не только так, и тут еще нет логического определения предела. Это один из моментов определения, но не само определение. e) Наконец, предел нельзя понимать и как нечто обязательно иррациональное. В вышеприведенных примерах, где пределом оказывается 1 или 0, совершенно ясно, что ни 1, ни 0 не есть иррациональность. Наоборот, эти величины вполне рациональны. Однако предел не есть и нечто обязательно рациональное. Исток рациональности не есть нечто иррациональное. Тут опять вполне уместна аналогия с огнем, который хотя и жжется, но понятие огня не жжется, или с треугольником, который хотя и треуголен, но сама треугольность, понятие треугольника отнюдь не треугольно[184]. Но точно так же нет никаких оснований считать предел и <…> обязательно рациональным. Точное числовое выражение предела может быть рационально (как в вышеприведенных примерах 0 и 1), но мы уже знаем, что точное числовое выражение предела как раз не есть предел. 3. После всех этих отграничений понятие предела становится гораздо более ясным и по крайней мере выясняется та область, где нужно искать определение предела. Основной вывод предыдущих отграничений сводится к следующему. Предел есть закономерность алогического становления, находящаяся не вне его и не в каком–нибудь отдельном его моменте, но имманентно присущая всему становлению и внутренне оформляющая его протекание. Это, собственно говоря, и есть определение предела. Однако дадим это определение в более расчлененной форме. а) Ясно до всякого рассуждения, что 1) предел может существовать только там, где даны не просто устойчивые и взаимно изолированные числовые структуры, но — только там, где налична стихия становления. Алогически становящаяся отрицательность только и может обеспечить продвижение к пределу, и без этого становления предел превращается просто в обыкновенное неподвижное и изолированное число. Далее, что такое становление? Становление есть отвлеченное тождество бытия и инобытия, и в нем еще не раскрыто ни то, что становится, ни то, как оно становится. Необходимо, следовательно, чтобы было то, что становится, т.е. необходимо, чтобы становление потеряло свой плоскостной (в смысле предметного безразличия) характер и стало рельефным, перспективным. Для этого надо, чтобы 2) становление было изменением, т.е. чтобы была налична та величина, которая становится, и чтобы становление стало предметно расчлененным. Предела здесь, конечно, еще нет, так как неизвестно еще о способах данности этого изменения. Покамест известно только то, что есть какая–то величина, которая как–то меняется, т. е. есть числовая антитеза внутреннего и внешнего. Спросим себя: можно ли мыслить предел без того, чтобы каждый отдельный момент становления не приближался к этому пределу? Конечно, вполне можно себе представить, что переменная величина стремится к своему пределу прерывно, но тем не менее, проходя через прерывную область, она все же должна приближаться к пределу. Прохождение через прерывную область все же как–то приближает ее к пределу. Нужно только, чтобы в более глубоком смысле непрерывность все же была налична. Если есть прерывность в абсолютном смысле, то это значит, что становление мыслится здесь прерванным в абсолютном смысле, т. е. и предел мыслится как переставший быть пределом. Так нельзя представлять себе существо предела. 3) Становление должно быть не только изменением, но и непрерывным изменением—для того, чтобы образовалось само понятие предела. b) Будем вдумываться дальше. Что еще надо присоединить сюда и чего не хватает для получения предела? Пусть у нас есть некое непрерывное изменение величины. Не всякая непрерывность имеет предел. Функция синуса, или синусоида, например, возвращается периодически в одни и те же точки и ни к какому пределу не стремится. Значит, из одной непрерывности мы предела не получили. Чего же тут еще не хватает? Очевидно, наша непрерывность должна получить какую–то определенную структуру, и в этой структуре непрерывности, по–видимому, и кроется вся диалектическая загадка предела. В понятии предела мыслится еще направление процесса. Непрерывное изменение должно быть направлено в определенную сторону, чтобы стремиться именно к пределу. Но для этого необходимо, чтобы мы при всей непрерывности изменения все же различали один момент непрерывности от другого. Если мы это различение производим, то мы получаем возможность сравнивать один момент непрерывного изменения с другим; а если есть возможность сравнивать, то есть и возможность судить о направлении изменения. Но что значит различать один момент непрерывности от другого? Это прежде всего значит, что непрерывность везде разная, т.е. что эта непрерывность внутренне прерывна, что она имеет прерывную структуру. Из недр этой непрерывности должна выбиваться наружу, на внешнюю поверхность непрерывного изменения, такая структура, которая бы обеспечила дробление единого непрерывного процесса на любое количество отдельных моментов, определяющих при их взаимном сравнении общую направленность процесса. Эта дробящаяся непрерывность обусловливает собою особую направленность изменения, хотя уже сейчас видно, что и этого еще недостаточно для конструирования категории предела. 4) Должно быть, стало быть, не только становление, изменение и непрерывность, но еще и такое непрерывно–изменчивое становление, которое по своему внутреннему смыслу дало как становление дробящееся. с) Не может быть только дробности. Чистая прерывность помешала бы понятию предела. Пробивающаяся изнутри дробность, определяя собою прерывные точки общего процесса становления, не может мешать тому, чтобы непрерывность все же продолжала как–то функционировать. Это, мы сказали, прерывность относительная, т.е. она как–то объединяется с непрерывностью. 5) Предел возникает на почве объединения непрерывных и прерывных моментов становления, направленного к пределу; и стоит только удалить один из этих моментов, как предел тут же сразу и уничтожается, — при удалении непрерывности перестает существовать движение и приближение к пределу, и при удалении прерывности исчезает возможность судить о самом наличии этого приближения. В обоих случаях предел перестает быть пределом или перестает функционировать как предел. 4. а) Можно ли удовлетвориться этим? И этого мало. Непрерывно меняющееся становление, имеющее определенную прерывно–непрерывную структуру, оказывается той или иной комбинацией прерывности и непрерывности. Когда идет речь о пределе, мы, однако, не принимаем во внимание эти прерывные или непрерывные моменты как таковые, хотя им и свойственна определенная структура. Предел — легче и как бы идеальнее всей этой массивной телесности реального становления, т. е. реально построенного числового ряда, или последовательности. Он есть сама комбинация или, вернее, сама ском–бинированность этих моментов, а не самые эти моменты, хотя бы и определенным образом скомбинированные. Существует то или иное чередование прерывных и непрерывных моментов становления, и существует определенный порядок этого чередования, определенный план и закон этого чередования. Вот он–то и интересен для конструкции предела, а не сама стихия становления. Этот план или фигурность становления внедрены в самую гущу становления, и в реальной числовой последовательности они неразрывны — этот план и то, что ему подвержено. Однако, в порядке абстрагирования, ничто не мешает эту смысловую фигурность извлечь из самой последовательности и формулировать самостоятельно. В таком виде, т. е. в виде смысловой закономерности чередования прерывных и непрерывных моментов, становление уже гораздо ближе к пределу, который и надо определить, как 6) структуру, или комбинацию, прерывности и непрерывности. b) Еще один шаг, и мы получаем точное определение предела. Упомянутая структура, или комбинация, вполне имманентна потоку становления. Но она не только имманентна. Имманентизм становлению есть все же некоторая распределенность по этому потоку становления, распро–стертость в течение потока. Но подобно тому как упомянутая структура прерывностей и непрерывностей извлечена из глубины становления и совлечена с него в некую самостоятельную данность, так необходимо из этой самостоятельно данной структуры тоже извлечь ее идею и смысл и не только извлечь, но и совлечь в новую самостоятельную данность. Всякая фигурность содержит ведь свое целое или свою целость в каждой своей точке, так что сама–то по себе эта цельность имеет вполне определенное и самостоятельное значение. Нужна ли для конструкции категории предела та фигурность со всеми подробностями своего строения? Конечно, не нужна. Надо сжать эту структуру до максимальной плотности — так, чтобы она превратилась вместо развернутого вида в одну заряженную смысловую точку, в одно напряженное задание, готовое излиться каждое мгновение вовне и предопределить собою числовую последовательность—любой длительности и протяжения. Структура непрерывно–прерывного ряда должна исходить из одной напряженной точки, которая не есть уже ни просто прерывность, ни просто непрерывность, но 7) закон и происхождение, рождающее [лоно] и перво–принцип, осмысливающий собою развитую непрерывно–прерывную структуру становления. 5. Это, наконец, и есть предел в математическом смысле слова. И из этого анализа вполне выясняется диалектическое место предела. Первый из указанных пунктов, становление, заставляет признать существенную роль категории отрицания, вернее, алогически становящейся отрицательности. Второй пункт, изменение, вносит в становление антитезу внутреннего и внешнего, которая, в соединении с третьим пунктом, непрерывностью, свидетельствует о том, что с категорией отрицания тут ставится в ближайшую связь именно иррациональность. Непрерывная величина, как мы знаем, и есть синтез внутреннего и внешнего в условиях иррациональной текучести этого синтеза. Иррациональность, стало быть, погружена здесь в стихию алогически становящейся отрицательности. Четвертый пункт, внутренняя дробность, свидетельствует об участии в категории предела — второго момента иррациональности (кроме чистого отрицания); и предел оказывается так же заинтересованным во втором диалектическом моменте иррациональности, во внутренней дробности, как и в первом, в чистой отрицательности. Пятый и шестой пункты из вышеупомянутых, т.е. чередование непрерывности с прерывностью и фигурная структура этого чередования., подчеркивают синтетическую природу предела и его категориальную самостоятельность, а седьмой, момент перво–принципности, доказывает, что речь идет об иррациональности в ее смысловом перво–истоке, что предел есть перво–единство алогически и непрерывно становящейся числовой дробности. Отсюда и диалектическая формула предела. Предел есть тождество внутренней дробности и внешней алогически становящейся отрицательности, данное как таковое в своем исходном перво–принципе. Или: предел есть иррациональность, данная в своем исходном перво–прин–ципе. Или еще: предел есть закон (или метод) построения иррациональности, потенциальная закономерность иррациональной стихии. Если мы пересмотрим основные определения в математике, относящиеся к учению о пределах, то нетрудно будет убедиться, что математика здесь также работает категориями, которые только что были развиты, хотя и формулирует их, конечно, чисто математически, а не диалектически. 1. Прежде всего стоит обратить внимание на интересное определение точки скученности, или точки сгущения. Для этого нужно знать, что такое окрестность. Если мы имеем некую точку А и имеем некую величину , могущую стать меньше любой заданной величины, то интервал А— … + г называется окрестностью точки А. Так вот, точка А называется точкой сгущения множества, если в любой сколько угодно малой окрестности А лежит еще бесконечное количество точек. Так, для последовательности 1 Стоит только обратить внимание на то, что точка скученности в случае, когда она для данного бесконечного множества является единственной и потому и предел этого бесконечного <.··>>—как уже становится ясной вся важность этих рассуждений для понимания категориальной структуры предела вообще. 2. Более резко этот момент смысловой закономерности ряда, стремящегося к пределу, выражен в известной теореме Больцано — Вейерштрасса. Она гласит: «Каждое ограниченное бесконечное множество точек имеет по крайней мере одну точку скученности». Собственно, тут можно говорить и о неограниченном множестве, так как ничто не мешает находить еще новые точки и даже бесконечное их количество — в окрестности той точки, которая именуется бесконечностью. Другими словами, бесконечную точку тоже нужно считать точкой сгущения. Итак, имеется ли ограниченное или неограниченное множество, в нем всегда есть хотя бы одна точка сгущения, или скученности. Но что это значит? Это значит прежде всего, что тут мы представляем себе перекрытие некоей области, или интервала, бесконечным количеством точек; и, таким образом, уже по одному этому здесь у нас двухплановая структура, не считая момента, объединяющего эти два количественные плана, — т. е. опять тут все та же антитеза внутреннего и внешнего. Эта антитеза заполнена здесь непрерывным и алогическим становлением. И вообще тут обнаруживаются все те моменты, которые нами уже получены. Но тут гораздо ярче, чем в предыдущем понятии точки скученности, выражен момент структурного построения бесконечного множества. А именно, оказывается, что только тогда точки могут оказаться входящими в бесконечное множество, когда все они притягиваются к каким–нибудь центрам или хотя бы только к одному такому центру. Этот центр, или эта точка сгущения, определяет собою специальную структуру взаимного расположения точек, т. е. такую структуру, когда расстояния между точками исчезающе малы. Это есть вполне определенная структура множества; и вот она–то и предопределена пределом. Предел как бы издали располагает особым образом точки бесконечного множества; он есть как бы принцип построения того числового поля, которое именуется данным бесконечным множеством. 3. Еще ярче эта принципная природа предела выражена в признаке Кохии для сходимости ряда, т. е. для наличия в данной последовательности предела. Как известно, признак, установленный Коши для сходимости ряда, гласит следующее. Пусть мы имеем последовательность 1, u2, un> где [N] может стать сколько угодно большой величиной. Если абсолютное значение любой разницы n—um> может стать меньше сколь угодно малого количества [], то упомянутый ряд сходится. Или, точнее, как бы мало ни было [], должно существовать такое [], чтобы для всякого <>> и для всякого n—um/<>. Это условие необходимо и достаточно для сходимости ряда. Предел, стало быть, превращает последовательность чисел в такую упорядоченность, что между двумя его достаточно далекими от начала членами разность может стать менее любой заданной величины. Он создает последовательность как некую текучую иррациональность, распределенную так или иначе в зависимости от числовой величины предела. Упомянутая закономерность и перво–принципность предела на учении Коши о признаке сходимости заметна еще ярче, чем в предыдущих примерах. 4. Особая, специфическая структура сходящегося ряда, выраженная как некий определенный принцип, хорошо, — пожалуй, даже лучше, чем у Коши, — формулирована в признаке сходимости Даламбера. Как известно, по Даламберу, сходимость будет в случае, когда предел отношения между соседними членами ряда n+1> и n> при при 1. Теперь мы подошли к огромному и принципиальнейшему вопросу, который до сих пор не нашел для себя почти никакой философской формулировки и остается по настоящий день чисто математической теорией, определяемой только одними математическими интуициями, без всяких признаков логической обработки. Тем не менее, <…> философское понимание этой области имеет фундаментальное значение для диалектического построения всей математики. И это есть проблема мнимых (комплексных) величин. Диалектика имеет целью конкретное логическое конструирование предмета. Диалектика числа должна дать адекватно логическую конструкцию числа — со всей конкретностью его построения. Конкретность же чего бы то ни было возникает только тогда, когда дан и осмысленно обоснован его реальный образ, его оформление в смысле живого предметного лика. Те три типа числа, которые возникают на почве внешнего гипостазирования числа (положительное, отрицательное и нуль), равно как и три типа, возникающие из внутреннего гипостазирования (целое, дробное, бесконечное), не могут претендовать на полную конструкцию смыслового образа числа. Эти числовые типы принципиально односторонни. Разумеется, в них не может не быть своего собственного оформления и своего собственного, специфического лика, ибо иначе они не были бы и самими собой. Однако тут нет конкретного оформления с точки зрения отражения в смысловой сфере полного лика числа. Только там, где в числе привлечены сразу и его внутренняя и его внешняя стихия, может быть впервые поставлен вопрос о конкретном лике, или образе, числа. Это элементарно очевидно. Только с привлечением внутреннего содержания числа к его внешне субстанциальной данности может начаться рассуждение о границе числа, об очертаниях числа, о его конкретном образе и форме. Но и тут не всякая конструкция в одинаковой мере построяет конкретный образ числа. 2. В рациональном числе, там, где впервые зародилась антитеза внутреннего и внешнего, граница между этим внутренним и внешним не может, конечно, не наличествовать (иначе не было бы и самой антитезы), но она тут только присутствует, наличествует, существует, а не положена диалектически. Рациональное число уже предполагает, что такая граница есть, но пользуется оно этой границей как некоей абсолютной данностью, положенной неизвестно кем и чем и имеющей неизвестное происхождение. В понятии рационального числа ровно ничего не говорится о том, какова эта граница и какие смысловые категории затронуты для ее порождения. В рациональном числе 1) положена сама эта антитеза и 2) дана эта антитеза на стадии неразвернутого тезиса, т. е. когда внутреннее и внешнее прикреплены одно к другому в качестве отвлеченных принципов и внешне [е ] еще не расползлось в бесконечность становления и не увлекло с собою внутренней структуры числа. Граница, таким образом, здесь вполне на месте, но о ней ничего не известно, кроме того, что она существует. В рациональном числе фигурирует только самый факт границы, и, как всякий факт, он есть тут абсолютная данность, еще не возведенная на степень понятия, не вобранная в сферу чистого смысла. Иррациональное число также немыслимо без антитезы внутреннего и внешнего, без различения внутреннего и внешнего и, стало быть, без наличия границы между ними, т. е. немыслимо без границы вообще. Однако и здесь нельзя говорить о том, что граница положена как смысловая категория. Единственное отличие иррациональной границы от рациональной — то, что здесь она дана в становлении, в движении. В рациональном числе граница существует между взаимно прикрепленными сторонами, внутренней и внешней. В иррациональном же числе внешнее инобытие перешло в становление и увлекло с собою внутреннюю стихию, отчего последняя утеряла свою целостность и превратилась в дробность. Но эта становящаяся граница здесь так же не фиксирована категориально, как и неподвижная граница в рациональном числе. Она предполагается здесь уже данной и используется как данность, хотя и неизвестен тот смысловой акт, в результате которого она идеально возникла. 3. Однако в пределах иррациональных структур уже намечается разная степень конкретности границы и оформления. В чисто иррациональном числе граница только становится, и больше ничего о ней тут не известно. Но в понятии непрерывности эта становящаяся граница внутреннего сливается с самим числом и, таким образом, полагается вместе с ним, полагается в меру его собственной положенности. Раньше граница вовсе не была положена, а бралась готовой, как положенная неизвестно каким смысловым актом. В непрерывной величине она слита с числом настолько интимно, что ее становление оказывается уже становлением самого числа, а положенность числа оказывается уже и положенностью ее самой. В непрерывности стихия границы, т. е. сама очер–ченность, оформленность, вошла во внутреннее содержание числа и объединилась с ним, и получилась некая оформленность, или образность, но — пока на[186] стадии текучего и алогического, сплоченно–неразличенного становления. Если бы граница, очерченность, образность были положены как такие, мы имели бы категориальную структуру границы, и диалектика числа как конкретного смыслового образа была бы в основном закончена. Но тут граница и очерченность положены вместе с самим числом, и потому предстоит еще диалектика разделения этих двух моментов, прежде чем будет получена чистая и конкретная смысловая фигурность числа. В непрерывной величине фигурность числа положена вместе с самим числом и алогически расплылась в нем. Прерывная величина вносит различения в эту алогическую растворенность фигуры числа в самом числе. В категории же предела впервые останавливается это бесконечное алогическое стремление и фиксируется как некая ставшая структура. Оформленность и образность, вошедшие в непрерывной и прерывной величине внутрь структуры и придавшие ей определенную смысловую содержательность (пока на стадии алогического становления), в понятии предела впервые фиксируются в своей едино–совокупной положенности, в своей ставшей, а не просто становящейся смысловой данности. Оттого предел есть ставшая фигурность внутреннего и внешне положенного числа, пребывающего во взаимно несоизмеримом подвижном алогизме. Предел есть положенность такой границы, такой структуры и числового очертания, когда этими границами и структурами определяется алогический процесс становления числа, по существу своему бесконечный. Непрерывность и прерывность слиты здесь в один процесс стремления выразить некую общую структуру становления, и эта структура и есть граница, предел — и в общем, и в специально–математическом смысле этого последнего слова. 4. Итак, мы получили до сих пор оформление числа, положенное в неразрывном единстве с самим числом, с его внутренно–внешним содержанием. Разная степень конструкции этого оформления зависит от разной степени конкретности самого числа. Ниже (§ []) мы увидим на трех типичных пределах — <…> как эта нарастающая конкретность числа, взятого вместе с его фигурностью, чувствуется вполне осязательно. Если предел <…> есть стихия числа (единицы) в его общеэнергийной выявлен–ности, где сама явленность, т. е. сама очерченность и фигурность, еще пока растворена во внутрённо–внешнем содержании числа и где нет раздельного фиксирования формы как таковой и числа как такового, то в пределе (…) начинается, рождается, а в пределе (…) завершается и наглядно рисуется такая оформленность числа, которая хотя и пребывает в полной с ним неразрывности, но уже осязательно на нем обрисовывается, выпукло на нем выступает и оказывается в значительной мере доступной для изолированного созерцания. В понятии (…) дано наиболее наглядно это совокупное содержание границы величины и ее внутреннего содержания — в конкретно выявленном взаимоотношении того и другого. Здесь наиболее зрелый плод совокупного полагания вещи вместе с ее смысловой образностью и очерченностью. 5. Следовательно, остается только отбросить то, ради чего данная образность есть образность, и мы получим уже чистую самостоятельную числовую образность, созерцаемую не на чем–нибудь другом и не в отношении чего–нибудь другого, а вполне самостоятельно, образность как таковую, как новую и самодовлеющую субстанцию. В категориях непрерывности, прерывности и предела числовая образность была хотя и положена, но эта положенность была связана здесь с формой и степенью положенности самого числа и потому получала не общую, а частную, вполне специфическую структуру. Это мешало числовой образности быть свободной структурой, и ее нельзя было вписать в таблицу основных математических категорий как самодовлеющую. Она тут пока еще играет второстепенную роль, и значение ее вполне прикладное. Но исключим из этого едино–совокупного обстояния образа–вещи числа его «вещественную» стихию и сосредоточимся на образности как таковой, на образности как самоцели, и — мы получаем уже совершенно новую категорию числа, вполне свободную и самоцельную; и тут уже не будет антитезы внутреннего и внешнего как основного и единственного фактора (при котором граница была бы чем–то второстепенным, хотя и само собою разумеющимся), но тут будет обратная тому ситуация: основную и единственную роль играет здесь сама граница, сама образность и оформление, а антитеза внутреннего и внешнего оттесняется здесь назад и начинает играть роль только смыслового фона, совершенно необходимого и очень нужного, но второстепенного и как бы окаймляющего выпукло данную и резко выступившую вперед очерченность и фигурную сконст–руированность. Число, данное как чисто смысловая образность и фигурность числа, как отделенная от его внутренно–внешне–го содержания чистая его структурность, и есть мнимое, или комплексное, число. К анализу этой глубочайшей категории математики мы теперь и обратимся. Мнимая величина может быть рассматриваема с разнообразных точек зрения, и в самой математике дается отнюдь не какое–нибудь одно–единственное ее определение, хотя, безусловно, все эти различия являются только разными сторонами одной и той же диалектической конструкции, и надо уметь их так связать, чтобы действительно получалась единая конструкция. 1. Одно из самых первых и элементарных определений мнимой величины — это то, что обыкновенно обозначается как i и представляет собою квадратный корень из отрицательной единицы, -1. Это вполне слепое определение мнимой величины, получаемое как необходимое завершение понятия числа, совершенно не раскрыто в математике по существу; и, кажется, можно с полным правом сказать, что никто ровно ничего не понимает в этом выражении -1. В руководствах по математике эта мнимая величина трактуется просто как необходимое следствие из желания проводить любые действия над любыми величинами. Если бы мы не извлекали квадратного корня из отрицательных величин, то в силу этого отпали бы весьма значительные операции, появляющиеся тем не менее вполне естественно, в порядке самых обыкновенных вычислительных приемов. Операция извлечения корня из отрицательной величины появляется вполне естественно, и поэтому волей–неволей приходится считаться с нею. Но что она значит, что это, собственно, значит—извлечь квадратный корень из отрицательного числа — этого, можно сказать, ровно никто не знает. И потому это пресловутое i вводят нехотя, как бы стыдясь столь неприличной вещи, и если вводят, то сейчас же стремятся избавиться от этого i и перейти к «вещественным» числам и операциям. Это наивное и смешное отношение к числу / было результатом определенной эпохи вульгарного материализма, видевшей конкретное только в вещественном и не подозревавшей того, что подлинная конкретность не в грубом веществе, но в диалектике бытия в жизни, в рождении и пребывании живых противоречий действительности. Поэтому нашей задачей является не стыдливо и боязливо прикрыть этот досадный символ i и сделать вид, что тут нет ничего особенного и что даже самое это / как бы не существует, а, наоборот, дать себе отчет в полной ясности мысли о природе мнимой величины и без всяких ограничений и стеснений вскрыть решительно все те категории мысли, которые вошли в это i и определили собой его общелогическую и, в частности, диалектическую структуру. 2. Что такое (—1) и что такое «квадратный корень»? Единица есть полагание, утверждение. В отличие от всякого другого числа единица есть полагание как такое. Положительная единица есть фактическая субстанция, единица же сама по себе есть полагание мысленное, смысловое; это идеальная субстанция. Отрицательная единица есть отталкивание[187] от положительной единицы, т. е. от фактически положенной субстанции, и — отталкивание снова в идеальную, смысловую область, и притом с новым содержанием. Отрицательная единица, как мы знаем из диалектики отрицательного числа, есть не просто идеальная единица (иначе она ничем не отличалась бы от абсолютной единицы), но такая «идеальная», которая возникла на основе «реальной» единицы. Она существует, но не в том смысле, как существует положительная единица; она существует только в чистой мысли, и притом не как чистая мыслимость просто (ибо в чистой мыслимости нет никакого отрицания), но как чистая мыслимость, отталкивающая реальную данность. Это такая мыслимость, т. е. такое оформление реальной субстанции, в результате которого последняя мыслится отсутствующей. Уже по одному этому (— 1) есть некое представление единицы, вернее, некий ее образ. Ибо та единица, которая существует в реальной единице как именно единица, но в то же время отталкивает от себя реальную положенность самой единицы, — такая единица есть образ, смысловая структура единицы, идея единицы. Ведь в бытии есть или факты, или идеи, или объединение того и другого — больше нет ничего. Однако в этом смысле отрицательная единица разделяет судьбу вообще всех отрицательных чисел. Отрицательность есть вообще некая мыслимость по сравнению с положительными числами, которые всегда даны как реальность. «Мнимость» есть, конечно, мыслимость, но не просто одна голая мыслимость. Тут возникает вопрос о квадратном корне. 3. В диалектике операции извлечения корня мы увидим, что извлечение корня и возведение в степень относятся к области алогического становления, в частности к области органического роста бытия, в отличие от остальных арифметических действий, которые мыслятся как механические или усложненно–механические. Возводя в степень, мы заставляем данное число повториться в каждом своем элементе; а извлекая корень, мы находим в нем то первоначальное основание, в подлинном смысле «корень», из которого [бытие ] появилось путем самоповторения во всех своих отдельных элементах. Это и есть признак организма — вещественное, субстанциальное повторение целого в каждой отдельной части и вытекающая отсюда невозможность существования этих частей в изолированном виде. Что значит в этом смысле извлечь квадратный корень? Это значит найти такое первоначальное основание отрицательности, откуда она появляется путем однократного самоповторения во всех своих основных элементах. Откуда появляется мыслимость единицы (отстраняющая реальную субстанцию единицы) и откуда само отрицание, если процесс этого появления есть некое самоповторение? Отрицательная единица есть чистая мыслимость единицы, отстраняющая, отталкивающая реальную единицу; откуда происходит это отстранение и отталкивание, и почему оно есть результат некоего самоповторения, и что именно повторяет тут себя самого в себе же самом? 4. Вот тут–то и рождается категория твердой очер–ченности и оконтуренности числа, той его абсолютной неупругой структурности и образности, перспективности, которая впервые и рождает самое число. Как возможно отрицание чего–либо? Только путем проведения границ, точно отделяющих его от всего иного. Мыслить отрицание единицы — значит мыслить ее границы со всем прочим, что не есть она сама, границы, отделяющие ее от всего прочего. Значит, корень отрицания единицы есть корень, из которого вырастают границы единицы, отделяющие ее от всего прочего. А квадратный корень из отрицательной единицы есть корень, из которого вырастают границы единицы, если их повторить на всем их протяжении. От чего отталкивается мысленная единица, когда она функционирует как отрицательная? Она отталкивается от <…> субстанции единицы, но это может значить только то, что реальная субстанция единицы имеет твердые контуры, от которых и происходит отталкивание. Раз ставится вопрос об отталкивании, то тем самым предполагается, что есть нечто твердое, от чего и происходит отталкивание. Следовательно, реальная субстанция мыслится здесь как твердая, т. е. имеющая определенную негибкую форму. Надо, чтобы эта форма была; и надо, чтобы от этой формы мы отошли и созерцали ее издали, чтобы вообще могло состояться суждение о границах и, значит, об отрицании. Когда проведены границы, то, как это ни [не ]обходимо для четкого созерцания предмета, границы, сами по себе взятые, тем самым еще не фиксируются специально. Ограниченность имманентно сопровождает всякую мыслимость, но чтобы созерцать специально ограниченность, границы, надо выйти за пределы этих границ или, точнее, надо просто различать уже не просто всю вещь от инобытия, но только одну ее границу от инобытия, а это значит — еще раз повторить эту границу в ней же самой, т. е. изменить эти границы, сохраняя не форму, но[188] какую–нибудь (пусть хотя бы бесконечно–малую—этого вполне достаточно) величину. Это и значит извлечь квадратный корень из отрицательной единицы. Таким образом, — 1 есть не что иное, как полагание твердо очерченной границы, или перспективно сформулированного образа, для отвлеченно взятой единицы, осуществление и утверждение оконтуренности единицы. 5. Тут еще не вскрыты все стороны мнимой величины, но покамест указана только одна существенная сторона. Однако тут вскрыто все, что содержится в конструкции у/— 1. Как скоро увидим, другие методы представления мнимой величины дадут и другие стороны в диалектике самой категории мнимого. Прежде чем перейти к этому, повторим еще раз в строго последовательной форме диалектику -1. a) Единица есть утверждение, субстанция, и отвлеченная, абсолютная единица есть утверждение[189] и субстанция в мысли, в идее, идеальное утверждение. Положительная единица есть новое утверждение, т. е. утверждение утверждения, реальное утверждение идеального утверждения. Отрицательная же единица есть новый переход в сферу идеи и смысла, но переход не с целью забвения реальности (тогда это была бы абсолютная единица), но с целью активного ее отрицания. «Минус единица» есть мысленная, идеальная единица, отталкивающая реальную единицу. Другими словами, (—1) есть оформление единицы, взятое в активном отстранении реальности единицы. Такое оформление реального, которое отстраняет саму реальность, есть чистая форма <…>, его смысловой образ. b) Извлечение корня из какого–нибудь числа есть операция, отражающая то первоначальное ядро числа, откуда появилось само число через свое алогическое становление путем реального самоповторения и самоотражения себя самого в себе же самом, т. е. это есть арифметическое выражение живого роста организма. Извлечение квадратного корня из числа есть операция выявления его указанного ядра, когда оно дорастает до данного числа путем однократного самоповторения (самоот-, следовательно, есть выявление такого первоначального ядра и основания смысловой образности числа, когда оно дорастает до этой образности путем однократного самоповторения (самоотражения, самоотличения). d) [1.] Это первоначальное ядро и основание числа должно поэтому претерпеть самоповторение, т. е. прежде всего самоотличение, но не то первоначальное самоотличение, без которого это ядро вообще не могло бы существовать «…) правилам диалектики), но то самоотличение, которое отличает от инобытия, не есть принцип, а уже утвержденный принцип, т. е. отличает реальность с определенными границами, самоотличение, которое отличает от инобытия самые границы числа; это самоповторение есть результат квадратности извлекаемого здесь корня. 2. Это основное ядро, или основание, числа должно здесь мыслиться как нечто твердое и абсолютно негибкое, ибо оно выдерживает на себе отталкивание, приносимое смысловой образностью (в случае отрицания), т. е., другими словами, искомое ядро, или основание смысловой образности, числа должно быть твердой, абсолютно твердой оконтуренностью числа, и только тогда эта последняя и может обусловить собою, путем самопротивопоставления, конкретно–смысловую образность числа. з. Наконец, поскольку это самопротивопоставление и самоотрицание мыслится, по условию, органически, как живой рост организма, оно должно пониматься так, чтобы указанное ядро, т. е. первоначальная, абсолютно–твердая оконтуренность, органически дорастало до конкретной образности числа, чтобы оно было живым скелетом живого числового тела. Это значит, что в той деформации, которую претерпевает [числовой] контур, целиком присутствует самый контур, т. е. то целое, бывшее вначале, остается целым и для того нового, что из него получилось путем деформации. е) Сводя все вышеуказанное к одной максимально сжатой формуле, можно сказать так. Все, что мыслится, и, следовательно, также число, чтобы мыслиться, должно иметь свои границы, но это еще не значит, что тут фиксируются самые границы. Чтобы фиксировать самые границы, необходимо уже их отличать как таковые от всякого инобытия. Но это значит, что тут фиксируются не границы, но границы границ, т. е. форма границ, образ ограниченности. Мнимая величина и [есть] форма и вид, образ ограничения числа, форма формы числа, число как смысловая перспектива. Эти пять тезисов с достаточной ясностью и полнотой вскрывают диалектическую структуру числа /, хотя, повторяем, само представление мнимости как - 1 вызывает только образ из существенных сторон этой категории. Не трудно сообразить, что это за стороны. Ведь исходным пунктом тут является момент единицы. Все прочее, что творится, творится с единицей. Единица есть смысловое полагание, утверждение. Следовательно, образность числа, к которой мы пришли, взята здесь с точки зрения своей положенное™; очертания числа даны тут в своем субстанциальном полагании. Ведь во всяком предмете мысли есть материя, есть идея и есть синтез того и другого в цельной вещи. Материя обусловливает собою гипостазирование, утверждение идей. И -1 дает как раз ту сторону числовой образности, которая есть ее субстанциальная положенность. Указанная форма формы числа дана тут пока на стадии полагания, утверждения, материальной данности. Следовательно, должна быть еще идея этой формы и образности, ее цельная вещественность. К этому теперь и перейдем. 6. а) По нашей основной таблице типов числа мнимая величина должна явиться, между прочим, диалектическим синтезом нуля и бесконечности. Этот вопрос надо проанализировать по существу. Нуль есть синтез положительного и отрицательного числа, или, по общему правилу диалектического синтезирования, граница между положительным и отрицательным числом; проведя границу вокруг положительного числа и тем отличивши его от бесконечной стихии отрицательности, мы и получаем этот синтез — ограниченность положительного числа. Далее, бесконечность есть диалектический синтез целого и дробного; это — граница между тем и другим. Дробное — то, чем является целое в своем инобытии, если отнять само целое и взять только инобытийные корреляты целого. Если теперь перенести в это инобытие и само целое, то это целое окажется полной недостижимостью для тех частей, из которых состоит инобытие целого, потому что инобытие есть всегда неразделимость, а, подвергнутое счету, оно есть всегда неисчислимость. Потому граница, отделяющая целое от дробного в этом диалектическом синтезе, состоит из бесконечного количества точек; она есть, короче говоря, бесконечность. Эти две границы, нуль и бесконечность, находятся, несомненно, в положении диалектического противостояния. Нуль, отделяя положительные числа от отрицательных, является только одной точкой, рассекающей общую систему чисел; бесконечность же является целой[190] бесконечностью таких чисел. Это, конечно, есть диалектическая антитеза. Для уточнения можно сказать, что достаточно уже только двух точек и достаточно, чтобы расстояние между этими точками было бесконечно мало, так как уже синтез бесконечности (т. е. синтез целого и дробного) осуществляется, ибо между двумя элементами множества, как бы они близко ни были между собой, всегда можно поместить еще одну точку. Это выражается в положении, что множество вещественных чисел повсюду плотно. Итак, каков синтез этих двух синтезов — нуля и бесконечности и [какова] граница, совмещающая в себе обе эти границы — границу в виде одной точки и границу в виде бесконечного количества точек? b) Синтез должен объединить в себе и тезис, и антитезис. Другими словами, должна быть такая граница, которая есть и точка, и больше, чем точка («больше, чем точка» — это, как сказано, уже есть бесконечное количество точек). Должна быть граница, которая, оставаясь точкой, в то же время содержит в себе еще по крайней мере одну точку, отличающуюся от другой; должны быть, следовательно, две точки, которые являются в го же время [единством]. Что это значит и в чем тут дело? Тут–то мы опять и должны призвать на помощь понятие числового контура, или числовой образности. Когда мы имеем некое <…> А, оно остается неоформленным вплоть до момента отличения его от не–А и отождествленным с самим собою. Только когда мы скажем «А есть А», — возможным делается оформление этого А и четкое отличие его от всего прочего. Но, конструируя это содержание «А есть А», мы как–то должны отличать А от А, т. е. от него же самого; иначе самое это суждение «А есть А» окажется бессмысленным. Итак, А не только отличается от нс–А, но отличается и от самого себя, — это мы хорошо знаем из общей диалектики. Но из этой же общей диалектики мы знаем, что это значит — отличие А от самого себя. Это значит то, что А есть некое целое, имеющее части. Как целое оно отличается от себя как от состоящего из частей (целое отличается от совокупности своих частей). Следовательно, суждение «А есть А», в сущности, есть суждение «А как целое <.··.> А как совокупность частей». Но как раз это самое мы утверждаем, когда отождествляем границу в смысле нуля с границей в смысле бесконечности. Граница в смысле нуля есть последняя неделимая целость точки, та самая развернутая точка, которая еще не имеет никаких частей. Такое целое мы в общей диалектике всегда и аналогизируем с неделимой точкой. Граница же в смысле бесконечности есть совокупность некоей суммы точек, — по крайней мере двух точек; тут — целое раздроблено, и раздробленные точки объединены в некую сумму. Стало быть, отождествляя (и, следовательно, синтезируя) границу–нуль с границей–бесконечностью, мы попросту категориально фиксируем границу–нуль, как бы говорим, что «граница–нуль есть граница–нуль», т. е. как бы проводим эту границу–нуль жирной линией, делаем ее твердой, абсолютно негибкой, создаем абсолютно крепкий контур, получаем эту самую границу границы, или форму границы, о которой шла речь выше. c) Итак, мнимое число есть также диалектический синтез нуля и бесконечности. [К] этому заметим, что в анализе понятия бесконечности мы сталкивались с одним недостаточным и неполным видом синтеза нуля и бесконечности, именно с умножением нуля на бесконечность. Это умножение дает неопределенную величину — как вещественную, так и мнимую. Однако этот синтез, как мы там указали, неполный. Нуль и бесконечность не функционируют тут как логические категории, но лишь как счетные величины. В то время как при диалектическом синтезировании обе категории входят в синтез вполне равноправно и равномерно, при счетной операции умножения сомножители отнюдь не равноправны. Всякое умножение имеет своей основной темой, главным своим предметом — множимое, и о нем тут только и идет разговор; множитель же только показывает, что с множимым творится в ино–бытийной сфере. Поэтому синтез [перемн ]ожения — частичный, а именно счетно–количественный, а синтез диалектический— полный равномерный, а именно логически–категориальный. d) Наконец, важно ощущать точную разницу между моментом числа выражаемым при помощи — 1, и его же моментом, выражаемым через синтез нуля и бесконечности. В первом случае в твердой оконтуренности и четкой смысловой фигурности, или образности, числа выдвигается, как мы знаем, момент полагания этой образности. Во втором случае, поскольку речь идет о проведении самой границы, о ее, так сказать, жирном черчении, нужно видеть противоположный момент образности, не субстанциальную ее положенность, но ее очерченность, картинность, что, несомненно, является чем–то противоположным первому случаю. Раз там субстанция числовой образности, то тут ее идея. И нет ли теперь такого представления о мнимой величине, где она сразу была бы дана и как субстанция числовой фигуры <…>, и как ее идея? Таким синтетическим представлением мнимой величины является т. н. гауссовское представление мнимости. а) Гауссовское представление мнимости сводится к следующему. Пусть мы имеем в круге перпендикуляр, опущенный с какой–нибудь точки окружности на диаметр. В полученном таким образом прямоугольном треугольнике (с прямым углом, опирающимся на диаметр) этот перпендикуляр, как известно из элементарной геометрии, будет средним пропорциональным между обоими отрезками диаметра. Для простоты будем считать, что этот перпендикуляр будет совпадать тоже с диаметром и что радиус данного круга равен единице. Тогда, рассматривая оба диаметра как оси координат, мы получаем отрезок первого диаметра направо = + 1, отрезок того же диаметра налево от центра координат = — 1, а отрезок второго диаметра поверх =(+1)•(1)= -1=i. Мнимое число, следовательно, есть квадратный корень из произведения положительной единицы на отрицательную. Конечно, это понимание мало чем отличается от первого, где фигурирует просто -1. Однако тут есть такое отличие, которым никак нельзя пренебрегать в диалектике. В чем тут дело? Тут, прежде всего, два момента—умножение положительной единицы на отрицательную и извлечение из этого произведения квадратного корня. От первого способа представления мнимости (-1) этот способ отличается только прибавкой умножения подкоренной отрицательной единицы на положительную. Эта прибавка означает одно из двух (то и другое есть одно и то же): или положительная единица движется (утверждается) в отрицательной области, или отрицательная единица движется в положительной области. И в том и в другом случае подчеркивается двуплановость смысловой образности числа. Отрицательное число само по себе есть сфера идеальная по сравнению с положительным числом, наличие же положительного числа в этой отрицательной области, т. е. различие нового утверждения в сфере чисто смысловой, есть, конечно, усиление этой смысловой сферы в смысле ее выразительности и фигурности. Точно так же положительное число мыслится как нечто реальное в сравнении с отрицательным числом, наличие же отрицательного числа в этой положительной сфере вносит в нее, несомненно, момент смысловой оформленности и фигурности. Стало быть, оба случая, т.е. (+1)·(—1) и (— 1) ( +1), в одинаковой мере вносят в основное представление i как -1 момент [двойной ] оформленности, выразительности, или фигурности; и тем самым здесь обусловливается то, что гауссовское представление мнимости заметным образом синтезирует в себе субстанциальное трактование числовой образности в -1 и смысловое ее толкование в синтезе нуля и бесконечности, давая, таким образом, некое уже не просто субстанциальное, не просто смысловое трактование мнимости, но синтетически–вещественное трактование (поскольку «вещь» есть синтез «субстанции» и «смысла», или «идеи»). 2. Однако гауссовское представление мнимости гораздо богаче того, что мы только что сказали. Оно богаче не только своим геометризмом (он, конечно, есть нечто прикладное), но и наглядностью] в более тонком, не прямо пространственном смысле. Именно, тут наглядно дано направление мнимости в сравнении с направлениями положительным и отрицательным. В более детальном понимании этого явления здесь три момента. Во–первых, это пересечение мнимой осью оси вещественных точек в нулевой точке. Во–вторых, это перпендикулярное направление мнимой оси в отношении вещественной. В–третьих, это общий смысл происходящего здесь перехода из линейной области в плоскостную[191]. 3. Что касается первого момента, то он интересен как новое доказательство того, что мы имеем здесь дело с начерченным контуром. Ведь нуль уже сам по себе есть граница положительных и отрицательных чисел. И тем не менее через эту границу проходит еще одна граница, зависящая теперь уже вовсе не от того, что в точке — нуль, но совсем от другой причины. Величина эта определяется тем, что мы извлекаем квадратный корень из произведения положительной и отрицательной величины. Если с точки зрения нуля, как равновесия между утверждением и отрицанием, здесь был наличен просто факт границы, — потому что ведь и в положительном, и в отрицательном числе речь идет только о факте числа (или о его отсутст–вин), или, как мы говорили, о внешнем инобытии числа, — то с точки зрения операции извлечения корня из отрицательности эта граница дается здесь в своей начерченности, в своей картинности и фигурности. Оба эти момента здесь совпали, и мы имеем в нуле не просто границу вообще, но и очерченно–заполненную границу, начерченную, как бы жирно проведенную границу. Таким образом, мнимая величина, являясь в вещественном смысле нулем (потому–то мнимая ось и проходит через нулевую точку вещественной оси), в более общем смысле отнюдь не является просто нулем. Там, где нет ничего вещественного, оказывается, кое–что может существовать. Может существовать фигура вещи, ибо сама–то фигура вещи отнюдь не есть вещь и не есть даже [нечто] вещественное. Фигура вещи отличается от самой вещи, — иначе мы и не употребляли бы такого слова — «фигура», а просто говорили бы «вещь». Отличаться от чего–нибудь можно только тогда, когда отличное не есть то, от чего оно отлично, — иначе не осуществилось бы и само отличное. Итак, фигура вещи (а тем более числа) — невещественна, в вещественном смысле она—нуль. Без посредства вещества она уже есть нечто, некое самостоятельное смысловое бытие, в котором существует и своя, чисто смысловая, материя, и свои, чисто смысловые, идеи, и свои синтезы того и другого. Это и выражено в гауссовском представлении мнимости. 4. Весьма интересен и второй момент в этом представлении— перпендикулярность линии мнимости к линии вещественных чисел. Что это значит? Перпендикуляр есть геометрическое место точек, равноотстоящих от данной прямой. Другими словами, это есть линия, таковым образом расположенная относительно другой линии. Но эта одинаковость расположения может быть выражена по–разному — смотря по тому, имеется ли в виду параллельность или перпендикулярность. Параллельность есть одинаковость расположения двух линий, когда они берутся в движении; это одинаковость движения (направления) разных линий. Понятие перпендикулярности предполагает обе линии (или по крайней мере одну из них) совершенно неподвижными, а имеется в виду содержание, статическое содержание одной линии и одинаковость расположения к этому другой линии. Перпендикулярность есть одинаковость расположения одной линии к статическому содержанию другой линии. Перпендикулярность мнимой линии к вещественной, стало быть, означает, что мнимость находится в одинаковом расположении к статическому содержанию вещественной положительности и вещественной отрицательности. Мнимость абсолютно одинаково расположена в отношении положительного и отрицательного содержания. Но это и значит, что мнимость есть граница, начерченная между положительным содержанием числа и содержанием отрицательным. Ибо только граница одинаковым образом расположена как к ограничиваемому, так и к ограничивающему. Окружность круга, например, является абсолютно тою же окружностью, смотреть ли на нее изнутри, с точки зрения положительного содержания круга, или смотреть на нее извне, с точки зрения фона, окружающего данный круг. То самое очертание, которое ограничивает данный кусок пространства, оно же и — вырезывает этот кусок и из окружающего пространства. Вот это–то и зафиксировано в том, что линию мнимостей Iaycc понимает как перпендикулярную к вещественной линии в ее нулевой точке. Только так и можно диалектически понять природу этой мнимой перпендикулярности, если не ограничиваться одной арифметически–счетной точкой зрения. 5. Наконец, третий момент гауссовского геометрического представления мнимых величин заключается в следующем; и этот момент является самым важным, самым принципиальным и решающим. Дело в том простом факте, что если разница положительного и отрицательного на прямой есть не что иное, как разница ее направлений, то разница вещественного и мнимого предполагает выход вообще за пределы прямой и переход в новое измерение. Не будем говорить о перпендикулярности, а сосредоточимся пока вообще на переходе от линии к плоскости. Оказывается, мнимость потребовала в данном случае перехода от линии к плоскости. Что же это значит в философском отношении? Вспомним наши рассуждения о природе пространственного измерения (§ [55]). Мы установили, что всякое пространственное измерение в отношении другого есть нечто алогическое, оно — чистое становление, причем эта инобытийность есть именно субстанциальная инобытийность, а не только смысловая. Ведь становление возможно и в пределах и данного отрезка прямой; и тут мы сталкиваемся с явлениями измеримости или неизмеримости, несоизмеримости. Это будет алогическое становление в пределах данной линии. Когда же мы переходим от линии к плоскости, то тут у нас совершается переход в такое бытие, которое субстанциально отлично от бытия линии, и это есть уже субстанциально самостоятельное алогическое становление. Так вот, мнимая величина требует субстанциального перехода в инобытие. Но только ли это? Если бы здесь шла речь просто о переходе в другое измерение, то этот переход сам по себе ровно ничего не говорил бы о мнимости. Получилось бы два вещественных измерения, как обычно бывает, например, при измерении площадей, и больше ничего. Вся сущность вопроса в том и заключается, чтобы перейти от одного измерения в другое без реального перехода в это последнее. Правда, в иррациональном числе мы тоже перешли в другое измерение. Однако, повторяю, там не шла речь о субстанциально новом измерении. Там имелось в виду смысловое же становление внутри данного измерения. В нашем же случае мыслится субстанциальный переход в другие измерения, но реально не совершается, а только мыслится, преображается[192], или отображается. И там, и здесь, следовательно, дано только мысленное, смысловое представление измерения; но в первом случае (для иррационального числа) это есть смысл внутреннего же смысла данного измерения, во втором же случае (для мнимого числа) это есть смысл субстанциально нового измерения, зафиксированный в данном измерении. Ясно, что это возможно только потому, что мнимая величина есть отрицание одного измерения в другом, представление одного измерения при помощи другого. Пусть я имею прямую и хочу говорить о плоскости только при помощи одной прямой, не переходя реально в эту плоскость. Это будет значить, что я оперирую с мнимыми прямыми (или, если угодно, с мнимыми плоскостями). Пусть я имею плоскость и хочу при помощи одних плоскостных категорий рассуждать о пространственном теле — у меня получатся мнимые плоскости. Наконец, я могу пространство четырех измерений изобразить при помощи трехмерного пространства. Тогда у меня получится усложненное трехмерное пространство, в котором будут участвовать мнимые величины. И сколько бы измерений мы ни брали, всегда, когда зайдет речь о переходе одного пространства на другое, мы должны будем прибегать к помощи мнимых величин. Ясно: мнимая величина есть отображение в данном вещественном измерении какого–нибудь другого измерения. Данная вещественная величина получает здесь некое новое смысловое оформление, получает внутреннюю перспективу, некий смысловой рисунок, фигурность, не зависящую от того, что мы двигались внутри этой величины, ибо, пока мы были там внутри, мы не могли видеть ее внешнего контура и фигуры и самое большое — это могли только двигаться там в разных направлениях, т. е. устанавливать фигурность ее внутреннего содержания, а не фигурность ее вообще. Теперь мы взяли эту внутреннюю представленность величины, отошли от нее на некоторое расстояние и тем самым наметили возможность зафиксировать эту величину уже как таковую, со всей ее величий ]ной фигурностью, на фоне окружающей действительности. Взять внутреннюю представленность величины из самой величины — это значит взять отрицательную единицу. Отойти от величины на некоторое расстояние, чтобы ее видеть, — это значит отличить ее от того, что ее окружает, т. е. перейти в отношении ее в сферу алогического становления, т. е. в новое измерение. И наконец, находясь в ртом новом измерении, обратить взоры на покинутую величину, с тем чтобы ее увидеть, т. е. с тем чтобы определить тот исходный пункт, который лежит в основе самой ее представленности, — это значит извлечь квадратный корень из отрицательной единицы. Так понимание Гаусса дает нам возможность философски интерпретировать самый смысл перехода от линейного представления к плоскостному, перехода, содержащегося в самом существе мнимой величины. 8. Если коснуться исторической стороны дела, то справедливость заставляет отметить, что уже Валлис имел полное представление о том, что невещественные корни алгебраических уравнений располагаются по прямой, перпендикулярной к линии вещественных корней, так что уже у него мнимая величина была [в виде] среднего пропорционального между положительной и отрицательной величиной[193]. Валлис действовал в конце XVII в.; ровно через столетие, в 1797 г., К. Вессель выпустил на датском языке труд с таким же представлением мнимости, который, однако, стал известен широким кругам только после перевода его на французский язык уже в конце XIX в.[194] Незамеченной прошла и аналогичная работа Арганда[195] в начале XIX в.[196] И только Гаусс в 1831 г. своей знаменитой работой о биквадратных вычетах сделал изложенную геометрическую теорию комплексных чисел популярным достоянием всех[197]. Изучение взглядов Гаусса, однако, не дает ровно никакого философского результата, если ограничиться текстом самого Гаусса. Единственная мысль его заключается только в том, что мнимая величина есть среднее пропорциональное между + 1 и — 1 и что для ее представления необходимо из линейной области выйти в плоскостную. Этот принцип — колоссальной, решающей важности. Но всякому ясно, что он имеет чисто математическое значение; и для философии он не больше как сырой материал. Наша концепция мнимостей, кажется, впервые превращает это гауссовское понимание в чисто философскую теорию. Чтобы не оставалось никаких неясностей в диалектической концепции мнимой величины, сделаем еще ряд добавочных замечаний. 1. Надо помнить, что кроме мнимой оси в нулевой точке вещественной оси и в этом же перпендикулярном направлении проходит еще также и вещественная ось (если брать прямоугольные координаты). Спрашивается: какая существует разница между мнимой осью и второй, вещественной осью (именуемой обычно «ордината», или ось у–ков)? Тут приходится волей–неволей стать на точку зрения развиваемой у нас теории мнимостей и сразу же отбросить всякое иное толкование. Но это обстоятельство остается весьма поучительным и требует четкого диалектического анализа. В самом деле, что тут происходит с вещественной осью и в чем же разница между обычной вещественной абсциссой и мнимой ординатой? Привлекая рассуждения, развитые раньше, будем думать так. Когда имеется в виду вещественная граница, это значит, что сама эта граница не фиксируется как таковая. Фиксируя границу как таковую, мы берем ее как чисто смысловую, а не как вещественную. Вещественная ось [есть] субстанциальное осуществление смыслового. Это дерево есть материальное осуществление некоего смысла, некоей идеи дерева. Стало быть, линия, точка и все, что существует, может быть чисто смысловым и чисто вещественным. Они, конечно, находятся в одном и том же месте и «имеют одно и то же направление», как и относительно дерева мы должны сказать, что идея дерева «находится там же», где и само дерево, и что она «имеет то же направление» своего действия и проявления, что и само дерево. И тем не менее это совершенно разные конструкции. Если мы имеем в виду вещественную абсциссу, то так мы ее и чертим как вещественную, ничем не отличая, в смысле вещественности, от ординаты. Но когда мы имеем в виду мнимую ось, мы не ограничиваемся проведением простой вещественной ординаты, но углубляемся на фоне этой вещественной абсциссы в ее чисто смысловое содержание и берем ее не во всей ее вещественной и телесной осуществленное™, но только в ее принципиальной, смысловой структуре, в ее идеальном содержании и фигуре. Поэтому, хотя мнимая ордината имеет «то же» направление, что и вещественная, и хотя она проходит через гу же нулевую точку абсциссы, что и вещественная абсцисса, все же разница между той и другой — огромная, и не понимать ее значит вообще не понимать природы мнимой величины. 2. В этом учении о мнимости ум, не привыкший мыслить чистый смысл, встречается с трудностями, которые возможно преодолеть только путем длительного педагогического воздействия и самовоспитания. В самом деле, как мыслить это чисто смысловое, идеальное? Как отличить его от вещественного, которое так «понятно» всем и каждому? Тут мы можем только призвать на помощь некоторые аналогии, облегчающие представление мнимостей, но надо помнить, что настоящее понимание, как таковое, не имеет никакого отношения ни к каким аналогиям, и оно должно функционировать без всякой помощи с их стороны. Учиться же на аналогиях всегда полезно. а) Первая аналогия, которую можно было бы привести, есть аналогия с зеркалом. Видя предмет в зеркале, мы, несомненно, имеем некий его образ. Сказать, что в зеркале присутствует сама вещь, — можно, но ясно, что она присутствует здесь не своей субстанцией (иначе получились бы две вещи, а не одна вещь со своим отражением в зеркале), но лишь своей образностью. Спрашивается: где эта образность находится? Ответить на этот вопрос довольно затруднительно, — во всяком случае не легче, чем на вопрос о «местонахождении» идеального, смыслового. Пусть знатоки вещественности ответят на вопрос: где и как «находится» зеркальное изображение вещи? Сказать, что оно находится «в» зеркале — это значит ничего не сказать, так как и без этого ответа всякому ясно, что изображение находится в зеркале. Этот факт сам по себе вполне очевиден и несомненен. Речь идет совсем о другом: что значит этот очевидный и несомненный факт и как его объединить? Вещь занимает место, имеет определенный объем, вес, плотность, массу и т. д. Ничего подобного нет в зеркальном изображении вещи. И тем не менее то, что мы видим в зеркале, есть сама вещь, сама вещь в смысле ее образа. Эта образность и есть «мнимая» вещь, ибо под «мнимостью» мы и понимаем чисто смысловую образность вещи, которая, раз она именно чисто смысловая образность, не есть вещь и даже не есть нечто вещественное. Изображение вещи имеет свои собственные размеры, причем законы этой размерности не есть законы строения самой субстанции вещи. Изображение вещи в зеркале, как это легко созерцается, находится даже на том или на другом расстоянии от поверхности зеркала, т. е. от вещественной области, хотя это расстояние и оценивается как будто совсем иными мерами, чем вещественные расстояния. Словом, зеркальное изображение живет своей собственной жизнью и связано оно с вещественной стихией вещи тоже весьма своеобразно. Оно, строго говоря, нигде не находится, его вещественные размеры равны нулю, и оно есть смысловая образность вещи, ее «мнимое» изображение. Так и нужно представлять себе мнимую величину. Она дана в веществе как бы перспективно, и ее контуры абсолютно не поддаются никакому вещественному воздействию; они абсолютно тверды и резко очерчены, и их нельзя стереть или подделать. Это и есть чистая и абсолютная граница и очерченность вещи, ее конкретно–смысловая фигурность и образность. b) Вторая аналогия относится к более грубому представлению гнущейся, или проваливающейся, поверхности. Поверхность, например, покрытая воском, может воспринять на себя печать и путем продавливания тех или других линий дать изображение определенной вещи. В сущности, это почти та же аналогия, что и с зеркалом. Но только эту вдавленность надо понимать обязательно идеально и чисто смысловым образом. «Мнимое» изображение заставляет поверхность как бы проваливаться внутрь, и это проваливание — не пространственное, а образное, перспективное, некая смысловая печать вещи. 3. а) Подобные аналогии делают понятным и то, что в математике носит название специально комплексной величины. Если мнимая величина [есть i], а [х, у]— оси координат (причем [у] оказывается расположенным, согласно предыдущему, по мнимой оси, а [х]— по вещественной), то величина b) Будем брать указанную выше аналогию с зеркалом. Ось у–коъ в этом смысле есть линия, идущая от поверхности зеркала в его перспективную глубину. Слово «идущая», конечно, нужно понимать не вещественно, но изобразительно, ибо на то это и есть «мнимая» величина. Это — как бы показатель того, что вообще происходит со всяким предметом, если наблюдать его отражение в зеркале. Уже грубое наблюдение показывает, например, что, чем предмет находится ближе к зеркальной поверхности, тем больше размеры его зеркального изображения; и, чем он дальше от нее, тем это изображение меньше. Ось ^-ков и есть показатель этого перспективного свойства зеркала вообще. Тут еще не ставится никаких реальных вопросов о той или иной вещи. Здесь дана только эта общая координата, являющаяся критерием зеркальной перспективы, подобно тому как абсцисса при движении от нуля слева направо является критерием абсолютной величины положительных чисел. При наличии такого перспективного критерия возникает вопрос уже и о применении его к той или другой вещественной величине. Эту вещественную величину дает здесь линия (функция) х. Беря эту величину и применяя к ней перспективный критерий мнимой ординаты, мы и получаем перспективное изображение данной вещи и обозначаем его через c) Здесь необходимо, как и везде, учитывать математический формализм, основанный на том, что число есть «равнодушная к себе самой определенность». Какое бы содержательное построение математическая формула в себе ни отражала, она всегда дает такое построение чисто количественно, дает числовым способом, при помощи чистого числа, и потому сознательно отстраняет от себя все понятное содержание данного построения, беря его только постольку, поскольку из него можно получить ту или иную числовую комбинацию. Понятийное содержание дано тут постольку, поскольку оно определяет собою специальные взаимоотношения тех или иных числовых операций. Также и в случае с комплексными величинами перевод вещественной величины в мнимую область может быть дан только чисто формально, путем только одних числовых взаимоотношений, без всякого учета онтологического содержания и смысла затронутых тут вещественной и мнимой областей. И как же это делается? d) Что происходит в зеркале? В зеркале происходит деформация вещи. Но математик сознательно отбрасывает от себя и знание того, что это за вещь (стол, стул и т. д.), и знание того, что такое зеркало, и даже знание самого процесса отображения. Все это содержательно понятные построения, которые отнюдь не «равнодушны» к своей определенности, а, наоборот, потому–то и интересны, что имеется в виду их содержательная и предметно–существенная определенность. Математика интересуется только одним: вот вещь, и вот ее деформация — какое отношение между ними? И при таком принципиальном формализме (а иначе это не была бы математика) весь вопрос сводится только к сравнению данных очертаний вещи с деформированным. Ясно, что основной категорией в этом сравнении будет категория направления, ибо все отличие деформированной вещи от самой вещи заключается только в том, что ее очертания приобретают здесь новое направление. Направление есть то формализи–рованное понятие, которое только и может употреблять тут математика. Возьмем все реальное изображение вещи в зеркале со всей его конкретностью и — забудем, что такое эта вещь, а сосредоточимся только на ее очертаниях. Сравнивая эти новые очертания вещи с первоначальным, мы тут не найдем ничего иного, как только разницу в направлении этих очертаний. Если бы мы рассуждали чисто геометрически, то мы еще могли бы говорить об измерении, а не о направлении; и эта категория была бы все же ближе к содержательности онтологических установок. Но мы хотим говорить о комплексных величинах исключительно арифметически (или арифметически–алгебраически). Поэтому геометрия здесь есть только сфера приложения. Значит, приходится разыскивать более абстрактный термин для выражения перспективного строения числа. И таким термином является термин «направление». 4. [а)] Вот почему комплексная величина b) Нечего и говорить о том, что «направление», которое имеется здесь в виду, есть направление совсем особого рода, не обычного вещественного характера. Это — направление в глубь зеркала, в глубину [мыслимости], направление нового измерения. Тут все время нужно иметь в виду аналогию с перспективой. Как в перспективе предмет уменьшается в своих размерах и тем самым происходит его оригинальная деформация с точки зрения созерцающего (хотя в вещественном смысле она и равняется только нулю), так и комплексная величина дает нам перспективную картину вещи, деформируя так или иначе ее контуры и давая им новый закон построения, без реального перехода в новую вещественность. Эта деформация может иметь уже сама по себе нулевое значение; тогда образ вещи будет вполне адекватно выражать реальные очертания вещи, нисколько их не деформируя, но это не помешает ему остаться чисто комплексной (или мнимой) величиной, так как образ вещи все равно не есть сама вещь и не есть нечто вещественное. Это смысловая, а не вещественная структура. c) В том, как представляется в математике комплексная величина, дан, следовательно, анализ числа с точки зрения его образной структуры. Тут отдельно даны вещественные и образные моменты, т. е. [они] абстрактно выделены из общей числовой стихии и, кроме того, даны в целесообразном объединении, адекватно отражающем отношения, остававшиеся невскрытыми до этого анализа в нетронутой стихии числа. 5. Подводя итог развиваемого здесь учения о природе мнимого (или комплексного) числа и давая ему самую простую, самую ясную и самую краткую (все это, конечно, — с точки зрения диалектики) формулу, мы должны употребить термины, которые, по существу говоря, должны были бы появиться у нас уже с самого начала, поскольку того требовал порядок появления у нас диалектических категорий математики, но которые, ради ясности изложения, необходимо употребить именно теперь, когда уже вскрыты некоторые основные элементы категории мнимой величины. [а)] Тут идет речь о рациональном и иррациональном числе и об их диалектическом синтезе. Мы ведь помним, что иррациональное число рассмотрено нами, кроме основной установки, также еще с точки зрения категорий непрерывности, прерывности и предела. После диалектики предела мы перешли прямо к диалектике мнимых величин, проследивши назревание этой категории еще в сфере учения о пределах. Но мы не связали всю категорию рационального со всей категорией иррационального. А между тем рациональное — иррациональное — мнимое есть вполне точная диалектическая триада[198] подобно тому как и триада нуль — бесконечность — мнимое также есть всецело диалектическая и рассмотрена нами по существу. Остается указать на синтетическую тождественность рационального и иррационального в мнимом, и тогда эта категория мнимости в основном получит более или менее полное и существенное определение. b) Мы знаем, что рациональное отличается от иррационального как понятие от вне–понят[ий]ного, как форма от оформляемого, как принцип от материала, подчиненного принципу. Само по себе рациональное есть только закон в отношении некоего материала, который подчиняется этому закону, или принцип и метод для некоей алогической массы, которая должна подчиниться этому закону или принципу. В этом сущность рационального во всесторонней взаимосоизмеримости отвлеченного и конкретного, так что все, что ни положено здесь отвлеченно, то тем самым дано и конкретно, так что тут нет ровно никакого противостояния или противоречия. Иррациональное, в котором конкретное распушено[199] размыто и тем самым получило изолированную свободу, является в отношении рационального чем–то алогическим, бесформенным, играющим роль простого материала (по аналогии, например, с сыпучими или жидкими телами, не имеющими своей собственной формы, но принимающими форму того или иного сосуда). Когда мы хотим объединить рациональное вместе с иррациональным, мы должны дать конструкцию, в которой бы оба эти принципа играли совершенно одинаковую роль. Необходимо, чтобы рациональное начало действовать взаправду как форма, а иррациональное — как оформляемое; и тогда обеспечено появление новой структуры, содержащей то и другое. Пусть мы имеем бесформенную кучу песку или глины, и пусть мы имеем отвлеченное понятие дома, человеческого жилья. Если мы захотели объединить то и другое, мы должны слепить из песка или глины дом. Что для этого надо? Для этого надо, чтобы бесформенная глина подчинилась отвлеченному понятию дома как некоей форме, принципу, как некоему методу оформления, а отвлеченное понятие дома перестало быть отвлеченным понятием и стало заданием и планом конкретной структуры. c) Из этого объединения и получается наличность уже не просто формы и не просто оформляемого, но — само сформированное, которое в свою очередь предполагает сформированное, структуру. И вот эта–то структура и есть мнимое (комплексное) число. Мнимое число, чистая структурность числа не есть, таким образом, ни отвлеченное понятие числа (рациональное), ни материя числа (иррациональное), ни объединенность того и другого как факт (сделанная из глины вещь), но — объединенность того и другого как новый смысл, как смысл этого вновь появившегося факта, как конкретная структура факта. Это сделанность вещи из материала, хотя и не вещь и не материал вещи, определенная скомбинирован–ность алогического материала, осуществимость отвлеченного закона и задания, принципа и метода, данная как новая смысловая физиономия факта. d) Можно сказать еще и так. Выше (§ 106.5) мы уже отметили, что в моменте алогически становящегося инобытия, если этот момент брать как таковой, в чистом виде, нет ровно никакой разницы между мнимым числом и числом иррациональным. Оба они предполагают, что некая рационально–вещественная величина вбирает в себя свое инобытие. Но какое именно инобытие? Внутри самой числовой структуры тоже есть инобытие; оно, как таковое, уже не выходит за ее пределы и оставляет самую субстанцию этого числа нетронутой. Число может объединиться с таким своим внутренним инобытием. Получится та внутренно–внешняя структура, которую мы выше именовали пределом. Но значит ли это, что число вошло тут в синтез с инобытием в абсолютном смысле, с инобытием в его субстанциальности, в его абсолютной независимости и самостоятельности? Конечно, нет. Это инобытие — внутреннее отличение[200] числа; и тут число входит поэтому в синтез со своим же собственным внутренним содержанием. Можно, однако, дать инобытию абсолютную, субстанциальную свободу. Это будет значить, что в поисках такого инобытия мы должны покинуть уже все число, а не ограничиваться только распут [ыв ]анием его внутреннего содержания. И вот синтез с таким инобытием будет уже синтез полный, абсолютный. Тут оба момента войдут в общий синтез действительно при полном равноправии. Это–то и есть комплексное число. В рациональном числе тоже дан синтез бытия и инобытия, внутреннего и внешнего. Но этот синтез дан тут в свете первого члена, бытия, а инобытие тут подчинено ему, соразмеряется с ним. В иррациональном числе тоже дан синтез бытия и инобытия, внутреннего и внешнего. Но этот синтез предполагает здесь превалирование алогического инобытия, этой дробящейся внешности. Оба синтеза поэтому не могут быть окончательными. Первый, основанный на примере внутренней целостности, подчиняет все внешнее становление числа себе и считает его своим внутренним достоянием, в то время как оно свободно и от него само число не должно зависеть. Второй синтез, основанный на примере внешне–становящейся дробности, подчиняет все внутреннее себе и вовлекает его в стихию своего становления (то [т ] предел есть не что иное, как закон самого же этого становления), в то время как это внутреннее[201] должно быть совершенно свободно и независимо ни от чего внешнего. Тогда наступает пора для третьего синтеза, когда бытие и небытие, или внутреннее и внешнее, объединяются на основании своего чистого синтеза, т. е. когда примат остается не за внутренним бытием, не за внешним инобытием, а именно за их равноправным синтезом. Тогда и рождается комплексное число. Его вещественная часть есть та самая внутренняя целостность, которая уже не поглощает ничего внешнего и ничему внешнему не подчиняется. Его мнимая часть есть та самая внешняя выраженность, которая нисколько не мешает вещественной части существовать в ее полной свободе и которая также и сама нисколько ей не подчиняется, происходя из источника, субстанциально нового в отношении ее (из другого измерения). Самый же синтез тем не менее не есть [ни] только внутреннее <…>, ни только внешнее бытие, но совершенно новая положенность нового числового бытия, — бытие перспективное, в котором уже нельзя различить, где предмет и где его становление, где внешняя и где внутренняя его структура и направление. В рациональном числе установлен только самый факт перспективы без ее конкретной формы, т. е. факт внут–ренно–внешнего синтеза; поэтому внутреннее и внешнее, логическое и алогическое просто совпадают тут и больше ничего. В иррациональном числе установлено то растекание факта перспективы, та алогизация внешности, без которой эта внешность не может превратиться в гибкий и податливый материал для перспективного оформления; поэтому внутреннее и внешнее тут просто не совпадают, и нужно бесконечно долго (и в (…) и в буквальном смысле бесконечно долго) трудиться, чтобы достигнуть этого совпадения. В положительном числе дан не голый бесформенный факт перспективы и не голая, оформляемая, текучая ее материальность, но сама перспектива в своей конкретной оформленности, фигурности, определенности и разграниченности. е) Таким образом, для понятия мнимости достаточно уже простой антитезы рационального и иррационального. Все прочее может считаться детализацией, конгруэнцией и демонстрацией этого основного определения мнимости. 6. В заключение нашего рассмотрения комплексного числа необходимо было бы указать на ряд чисто математических теорем и правил в области этого учения. Делать это, однако, в данном месте не очень целесообразно ввиду того, что большинство интереснейших построений с этим мнимым i требует еще исследования таких китов математической мысли, как <…>, т. е. предполагает исследование трансцендентных чисел, чего мы еще не предпринимаем. Таков интеграл Коши, выражающий значение аналитической функции внутри замкнутой области регулярности через значения функции на контуре области. Такова теория Абелевых, и в частности эллиптических, функций или теория автомо[рфных] функций и т. д. Упомянем только ряд простейших положений теории комплексных чисел. Таково прежде всего сложение комплексных чисел. Оно происходит по правилу обычного векторного сложения, через построение на слагаемых векторах параллелограмма. Как указывалось выше (§ [106]), это есть признак того, что комплексное число предполагает переход в иное измерение. Сложить два комплексных числа потому и равносильно сложению двух разнонаправленных вещественных векторов. Комплексное умножение, предполагающее для множимого числа его растяжение и поворот, отличается от векторного (внешнего) умножения в вещественной области тем, что произведение остается здесь в той же плоскости и сама плоскость не получает никакого вещественного направления, как в умножении вещественных векторов. Извлечение корня из комплексного числа геометрически есть не что иное, как деление окружности на то или иное число равных частей. А это в комплексных случаях должно предполагать переход окружности в иное измерение, т. е. [пониматься] как ее изгибание. Известна теорема Коши: интеграл от регулярной аналитической функции, взятый по замкнутому контуру, равен нулю в области ее регулярности. Но, как известно, то же самое явление мы замечаем и в криволинейных интегралах. А криволинейный интеграл предполагает две вещественных переменных. Следовательно, и здесь мы наталкиваемся на тот факт, что комплексное число (или [мнимое]) соответствует переходу из одного измерения в другое. Эту перспективность, лежащую в основе мнимой величины, нетрудно было бы показать и на многих других примерах как из математического анализа, так и из гидродинамики, теории[202] упругости, электромагнитной теории света, из теории потенциала и др.l) — ряд расходится; когда