c) Целое содержится в каждой своей части. Но, употребляя слово «часть», мы имеем в виду не просто целое, а нечто большее. Если бы речь шла просто о целом, то ни к какой «части» мы не переходили бы и ни в каком новом термине не нуждались бы. Раз мы перешли к части, да еще зафиксировали ее особым термином, то ясно, что, как бы целое ни отождествлялось с частями, в «части» содержится нечто большее, чем просто в целом. Потому целое меньше каждой своей части. Целое именно содержится в части. А содержаться можно только в том, что больше содержимого и что охватывает его. Итак, целое меньше каждой своей части и меньше суммы всех своих частей.
III. Смысл, или идея, есть нечто само по себе ни целое, ни дробное; число само по себе—вне этих определений. Но смысл, идея, а в данном случае число — переходит в становление. Становление возможно внешнее и внутреннее. Целой становится идея тогда, когда она вся перешла в становление и взято все ее становление с начала до конца. Но так как становится здесь не что иное, как она же сама, эта идея, то тут происходит отождествление идеи вообще и ее становления; идея дается в аспекте своего становления, которое как бы покрывает и изолирует идею.
Получается идея как ставшее, причем это ставшее еще не имеет ничего общего с вещами, а ставшее это — всецело смысловое и числовое. Ставшее это может переходить в свою очередь в становление. Тогда разрушается цельность ставшего, и оно разбивается на «части». Таким образом, дробное число есть двухмерный символ числа, содержа, во–первых, переход от числа вообще к становлению в качестве целого (первый символический слой) и, во–вторых, переход от целого к становлению дробным (второй символический слой).
4. а) Диалектика, содержащаяся в этих трех параграфах (намеченных выше римскими цифрами I, II, III), может быть принимаема только в буквальном и отнюдь не в каком–нибудь переносном или условном смысле. Что целое одновременно и больше, и меньше своей части, и равняется ей, — это безусловное требование мысли. Больше того, эти три суждения — «целое равно части», «целое больше части», «целое меньше части» — есть одно и то же суждение. Фиксируя любое из них, мы получаем другое и третье; и невозможно признать только какое–нибудь одно из этих суждений. На этом зиждется вся диалектика, и, не усвоивши[144] этого, нечего и думать проникнуть в диалектические тайны более сложных математических конструкций.
b) Попробуем представить себе, что целое только больше части и в то же время не равно ему. Если целое только больше, то часть, следовательно, меньше целого. А если часть меньше целого, то она, стало быть, есть нечто иное, чем целое, и целого в ней не содержится. Если же целое не содержится в части, т.е. если в каждой части содержится нуль целого, то и во всех частях содержится нуль целого, ибо сумма нулей есть тоже нуль. Следовательно, если целое больше части, и только больше, то это значит, что целое не состоит из частей, а части, входящие в целое, не суть части целого, а совершенно самостоятельные вещи.
с) Могу [т] сказать, что когда утверждается, что целое больше части, и только больше (а в то же время ведь и не меньше), то это надо понимать не в том смысле, что целого совсем не содержится ни в какой части, а в том смысле, что в каждой части содержится часть целого (а не все целое). Тогда получается возможность допускать, что раз в каждой части содержится часть целого, то во всех частях содержится все целое, и, следовательно, отпадает необходимость абсурдного вывода, что целое не состоит из частей и части не суть части целого.
Однако это лишь видимость возражения. Дело в том, что здесь скрыто содержится мысль о разнообразии этих частей целого, наличных в каждой отдельной части, ибо, только утверждая, что в одной части содержится один момент целого, в другой—другой и т.д., только утверждая это, и возможно потом из сложения этих отдельных моментов целого, рассыпанных по частям, пытаться составить само целое. Но эта идея разнообразия моментов целого портит все дело, так как неясно, чем же объединяются эти разнообразные моменты целого. Если они объединяются одним из этих моментов, то, следовательно, по крайней мере хоть в одном моменте целого содержится все целое целиком и, следовательно, хотя бы тут целое не больше части. Если же они объединяются чем–нибудь выходящим за пределы каждого отдельного момента, то они должны быть тождественны между собою в отношении наличия в них этого выходящего за их пределы начала. А так как это последнее может быть только самим же целым, то целое, стало быть, совершенно одинаково содержится в каждой своей части, а не только в виде того или иного своего момента. Следовательно, отдельные части не могут быть между собою разнообразными в смысле наличия целого, и потому отпадает всякая возможность думать, [что] из частичных моментов целого можно создать целое. Так остается в силе основной аргумент, что, когда целое только больше части, — это значит, что целое не состоит из частей.