Читаем Хаос и структура полностью

Имея полное и законченное понятие числа в натуральном ряде и зная его диалектическое происхождение, мы переходим к тому трудному вопросу, который можно назвать проблемой классификации чисел. Труден этот вопрос, конечно, не технически, так как уже на первых страницах алгебры <…> математики с поразительной ловкостью и беззаботностью выставляют очень легкие и понятные определения того, что такое целое, дробное, рациональное, иррациональное[130] числа, и в дальнейшем даже ни разу не возвращаются к определению этих чисел, считая их абсолютно ясными и понятными. Конечно, технически нет ничего проще понять, что такое, например, отрицательное или мнимое число. Для философа, однако, тут залегают огромные логические трудности, по общему обыкновению для философа: что понятнее всего профану, то непонятно философу, и что легко и понятно для философа, то составляет часто непреодолимые трудности для профана. Диалектическая классификация типов чисел, предлагаемая здесь, обладает чрезвычайно большой простотой, если только дать себе труд вдуматься в нее. Для мыслящего требуется здесь только самое элементарное владение диалектическим методом, попросту даже сказать, только понимание основной диалектической триады. Кому понятно вообще, как тезис переходит в антитезис и завершается, возвращаясь в себя, синтезом, тот без труда поймет прилагаемую ниже классификацию, и она будет для него простым и очевидным продуктом элементарного логического анализа. Впрочем, для понимания предлагаемой диалектики типов чисел надо преодолеть трудность гораздо большую, чем владение диалектическим методом. Надо отказаться от высокомерия математических учебников, претендующих на всезнание и решительно все на свете «понимающих» и «знающих». Забудем ту легкость, с которой мы оперировали в школе, когда учитель давал нам задачи с отрицательными и иррациональными величинами. Технически вычислительная легкость не имеет ничего общего с логической четкостью понятия. А мы хотим здесь добиться именно логической, и в частности диалектической, четкости.

2. а) Когда мы говорим о числе, т. е. о числе самом по себе, о числе просто, как оно налично в натуральном ряде чисел, мы не мыслим его ни положительным, ни отрицательным, ни рациональным, ни иррациональным, ни каким–нибудь иным. Понятие числа выводится сначала в виде числа просто. Нужен какой–то новый акт мысли, чтобы перейти от двойки просто к ( + 2), к положительной двойке, не говоря уже о переходе от двойки просто к отрицательной двойке, к ( — 2).

Может быть, этот переход от двойки просто к положительной двойке понятен легче всего, и проще всего формулировать его. В самом понятии «положительности» содержится то, без чего невозможен никакой диалектический переход, а именно содержится момент полагания, положения, утверждения, тезиса, того, что потом должно иметь свою особенную судьбу путем перехода в инобытие. Положительное число есть число как тезис, как акт полагания в сфере, инобытийной в отношении натурального ряда. Оно положено, утверждено мыслью, утверждено как некоторый мыслительный факт, как некая смысловая субстанция. То, что число есть число, и то, что число есть субстанция числа, — это совершенно разные вещи.

Перейти на страницу:

Похожие книги