Читаем Хаос и структура полностью

3. Можно эту шестиплановую структуру единицы формулировать и короче, имея в виду формулу числа как общей категории, данную в фундаментальном анализе. Там мы вывели, что число есть ставший результат акта подвижного покоя самотождественного различия. «Акт» отмечен выше в пункте b, «подвижной покой самотождественного различия» — в пунктах с—f. «Ставший результат» возникает как следствие участия принципа, отмеченного в пункте а, в совокупности всего прочего как начало, ведущее к окончательному оформлению. Таким образом, вся эта шестиплано–вость единицы есть ни больше ни меньше как повторение всех элементов, входящих в определение числа как перво–принципа. Однако мало того, что этот перво–принцип, со всеми своими элементами дан не сам по себе, но как реальная сущность чисел, т. е. как бытие, как утвержденность этого перво–принципа. Но и в этой общей утвержденности перво–числа в виде бытия сущности числа–в–себе тут, несомненно, выделен один момент из всех, его составляющих, а именно, опять–таки момент полагания, и он доминирует над всеми остальными, подчиняя их себе и оформляя заново. Таким образом, единица есть в общей сфере бытия сущность числа–в–себе, такой ставший результат акта подвижного покоя самотождественного различия[122], который дан как акт полагания.

4. Чтобы не утерять единой нити во всех этих рассуждениях, расположим предыдущие акты полагания и ближайший будущий на одной линии. Перво–акт полагает себя, и получается перво–число, число как общая категория, число как перво–принцип (обще–математический). Число как перво–принцип полагает себя, дается как чистый акт полагания, и — получается число–в–себе, интенсивное число, или арифметически–алгебраически–аналитическое число. Число–в–себе, переходя в новый акт чистого полагания, создает сущность числа, или арифметическое число, в противоположность числу–вне–себя геометрии и числу–для–себя аритмологии. Сущность числа, переходя в дальнейший акт полагания, создает единицу. Единица, переходя дальше в новый акт полагания, создает натуральный ряд чисел, т. е. реальные числа, фиксируемые нашими обычными цифрами. Всякое реальное число натурального ряда, утверждая себя в виде нового акта полагания, создает положительное число. К этому вообще надо заметить, что каждая следующая категория получается в диалектике путем положения предыдущей, причем это положение, как мы много раз удостоверились, тождественно отрицанию, вызывающему путем своего собственного отрицания новое утверждение, точно ограниченное и тем и дающее следующую новую категорию.

Все эти акты полагания, как мы видели в прежних категориях, сопровождаются актами отрицания, инобытия. Каждое инобытие имеет везде свое инобытие и свой синтез бытия и инобытия.

Сущность числа, положенная как чистый акт, есть единица. Что есть ее инобытие и в чем синтез единицы с ее инобытием?

§ 86. а) Безграничное конкретное множество; b) равенство (неравенство).

1. «Одному» противостоит «многое». «Единичному» противостоит «раздельное», «единственному» — «множественное», «единству» — «множество». Что противоположно единице? Единице противоположно множество других таких же единиц. Но такое множество не отличается полной дискретностью и беспорядком. Тут есть свои законы, которые необходимо точно формулировать.

Когда мы рассматривали перво–число, мы установили наличие там нескольких существенных моментов, из которых главнейшую роль играют: акт полагания, подвижной покой и самотождественное различие. Так как всякая категория, бытийная, равно как и инобытийная, одинаково содержит в себе перво–число (на то оно и перво–число), то эти основные моменты мы находим также и в инобытии, окружающем единицу. Далеко не всегда проведение этих деталей плодотворно; для многих категорий это совершенно искусственно и бесполезно. Но и в инобытии единицы это дает интересные общеупотребительные категории, и их нельзя замолчать.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное