d) Таким образом, континуум есть бесконечное число раз повторенное или, лучше сказать, бесконечно напряженное становление. И это так и должно быть, если мы вспомним, как вообще одна диалектическая категория происходит из другой. В этом сочинении мы не раз пользуемся примером движения и покоя. Эти категории суть взаимное отрицание. Но если мы представим себе, что движение происходит с бесконечной скоростью, то оно сразу, в одно мгновение охватит все точки бесконечности, какие только имеются; и раз ему поэтому некуда будет больше двигаться, оно превратится в абсолютный всеобщий покой. Точно то же самое происходит и с алогическим становлением. Покамест оно взято как такое, в чистом виде, оно есть отрицание эйдоса, смысла, едино–раздельности. Но возьмем его в максимальном напряжении, с бесконечной, так сказать, скоростью распространения. В таком случае оно охватит все точки бесконечности, т. е. всю бесконечность, в одно мгновение. Каждое мгновение бесконечности оказывается алогическим становлением, так как оно отныне решительно всюду как таковое, во всякой точке бесконечности со своим неизменным и абсолютным алогизмом. По этому самому оно не имеет и никакого начала и конца: всякое начало и конец алогично становится, и потому, строго говоря, континиум не имеет ни первого, ни последнего элемента. Однако раз охвачена вся бесконечность, а это мы получили раньше как нечто устойчивое и неделимое, то и наше становление переходит тут в свое отрицание; оно здесь как бы останавливается и превращается в расчленяемую, едино–раздельную идею. Это как раз и есть континуум. Мы его можем дробить как угодно и создавать из него какую угодно едино–раздельность, но мы прекрасно чувствуем, что это вовсе не та едино–раздельность, которая есть в конечном, да и не то единство, которое есть в трансфинитном. Хватая отдельные точки этой «едино–раздельности», т. е. фиксируя их на манер конечных элементов, мы сразу видим, как они выскальзывают из наших пальцев и ползут во все стороны. Это и значит, что континуум есть бесконечно напряженное становление и нельзя в нем отмечать никакие конечные моменты, — подобно тому как и смысл, идея есть бесконечно напряженные инобытие и факт. Инобытие есть бесконечно размытое становление эйдоса, а эйдос есть бесконечно сомкнутое восстановление инобытия. Не иначе и в том случае, когда эйдос есть трансфинитное число, а инобытие есть чистое алогическое становление.
е) Только теперь, когда понятие континуума окончательно раскрыло нам свою философско–магематическую тайну, мы можем поставить континуум в тот контекст вне–числовых определений, который мы прервали выше, при переходе к п. 6. Что континуум есть вне–числовое определение, это ясно из того же, из чего ясна и вне–числовая определенность конечных и бесконечных чисел. Ведь чтобы число было конечным или бесконечным, надо, чтобы уже ранее существовало само число, как синие и красные карандаши уже предполагают, что есть карандаш вообще. И как синева и краснота, большие и малые размеры, хорошее и худое качество и пр. суть вне–карандашные определения карандаша, так и конечность, бесконечность, трансфинитность и континуальность тела суть его вне–числовые определения.
Но какое же это вне–числовое определение? Чтобы построить континуум, мы исходим из понятия трансфинитного эйдоса, но мы вовлекли этот последний в стихию чистого становления. Как алогическое становление в виде инфинитезимального бесконечного разыгрывалось у нас на путях от конечного к трансфинитному, составляя в некотором роде внутреннее содержание трансфинитного, так теперь это алогическое становление расстилается вне трансфинитного, увлекая его в свою бездну и по–своему его перестраивая. То, что сначала было внутри, теперь стало трансфинитно, в обоих случаях являясь методом его смыслового конструирования. При таком положении дела континуум явно оказывается чисто выразительной формой, как это видно уже на основании наших принципиальных установок (§ [ ]).
Итак, если конечное, инфинитезимальное и трансфинитное суть вне–числовые определенности, данные — соответственно— как эйдетическое (едино–раздельное), алогически становящееся и наличное бытие (§ [9.44]), то континуум есть, очевидно, вне–числовая определенность числа, данная как выразительная форма.
На этом мы кончаем наш анализ диалектического строения континуума.
10. Два вопроса или, вернее, один вопрос в двух аспектах остается нерешенным. Во–первых, почему выразительная форма должна быть чем–то сплошным и нерас–члененным и не есть ли это только один вид выразительности, в то время как второй вид требовал бы полной расчлененности и оформления? И, во–вторых, почему нельзя идти еще дальше за пределы , совершая над ним те же действия, что и над , и какие от этого могли бы получиться результаты?