b) Итак, нами получено число во всем своем логическом завершении. Его едино–раздельная упорядоченная определенность дала нам возможность оперировать с ним как с абсолютно усточивой структурой, а его становление привело нас к разнообразным числовым операциям, точные законы которых также получили для нас необходимое диалектическое обоснование. Теперь мы забываем все внутренние различия числа, обозначая их одним и по возможности наиболее широким термином. Это для нас просто определенность числа как такового, или, иначе, выразительно–числовая определенность. Спросим себя: куда же пойдет число дальше? Ведь дальше уже начинается вне–числовая сфера, т. е. сфера даже вообще не количества, а, например, качества или какой–нибудь другой категории, смотря по выбору той или иной диалектической системы. Но мы не можем переходить в эту вне–числовую сферу, не покидая исследуемой нами математической области вообще. Как же в таком случае мы могли бы в целях еще большей конкретизации понятия числа и множества привлечь и это вне–числовое бытие?
c) Способ такого привлечения нам хорошо известен. Это способ выразительных форм. Выражение как раз дает возможность смотреть на вещь извне и таким образом учитывать ее внешний антураж, но в то же время оно отнесено только к самой же вещи и ни к чему другому. Итак, на числе и множестве должно почить вне–числовое качество. Но какое же именно это качество? Поскольку число есть внутренне равнодушная сама к себе определенность, исключающая всякое вне–12 А. Ф. Лосев.
числовое качество, постольку необходимо думать, что никакая специфическая качественность здесь неприменима. Но тогда это значит, что к числу применима качественность вообще, качество как отвлеченная категория, другими словами, потенция качеств, принципиальная возможность получить то или иное вне–числовое существование. Иначе говоря, число, или множество, заново осуществляется, но осуществляется во вне–числовой среде. А это и оказывается источником ряда дальнейших весьма важных и даже основоположных математических категорий.
3. а) Рассмотрим способы этого осуществления, или полагания, числа во вне–числовой среде. До сих пор мы находили в числе только специфическую определенность, которую мы выше назвали выразительно–числовой определенностью. Что теперь будет с нею делаться, если мы ее заново станем полагать, но полагать уже во вне–числовой среде, так как всякая иная среда уже нами использована для конструирования самого числа?
Полагаем числовую определенность в чистом виде. Мы ничего к ней не прибавляем и ничего от нее не отнимаем. Мы просто полагаем ее как таковую во вне–числовом инобытии и—смотрим, что из этого получается. Получается то, что называется конечным числом и конечным множеством. В самом деле, что нужно для наличия конечного числа? Если оно конечно, оно имеет конец, т. е. свою определенную границу. А если оно имеет границу, оно, во–первых, твердо сопротивляется всякому уходу за эту границу, так что всякий уход за эту границу есть уже нарушение самого принципа конечности. А во–вторых, наличие границы неуклонно ведет к возможности дробления внутри того, что обладает этой границей, ибо ограничить — это диалектически и значит превратить в дробимое. Другими словами, конечность есть не что иное, как вне–числовая определенность, но только определенность, взятая в чистом виде, т. е. в своем бытии, в своем принципе. Это есть просто едино–раздельность, но не та идеальная, при помощи которой впервые только еще производилось отличие одной единицы от другой в пределах данного числа, но та едино–раздельность, которая перешла во вне–числовую данность, где она и осуществилась как таковая, т. е. осуществилась в своем принципе, так что число «три» или «четыре» отныне для нас оказывается не просто результатом различения и отождествления в определенном порядке следуемых единиц, т. е. не просто результатом счета, но результатом фиксирования данного числа извне, результатом того, что это число твердо положено вне себя и что ему дальше некуда двигаться (так как все дальнейшее есть уже вообще не число, но — вне–числовая область). Все числа, обладающие таким свойством, являются уже не просто едино–раздельными, но и конечными.