b) Наконец, необходима и еще одна диалектическая позиция, долженствующая к тому же завершить всю сферу числового выражения. А именно, мы должны взять всю числовую сферу целиком и, забывая все, что мы различили внутри нее самой, подвергнуть ее рассмотрению с точки зрения вне–числовой. Ведь выражение предмета и есть его значимость для иного, когда он является иному. До сих пор наше число являлось самому себе. Выразительная форма получалась у нас, вообще говоря, как та или иная комбинация самих же чисел (таковы модуль, группа и т. д.). Но постоянное и уже последнее по своей конкретности числовое выражение получится тогда, когда мы всю сферу числа противопоставим вне–числовой сфере.
Однако эту позицию удобно будет провести вместе с теорией множеств, что мы и делаем ниже, в § 72.
Выражение геометрического пространства составляет один из самых глубоких и увлекательных отделов философии числа. Попробуем наметить некоторые вехи в этой замечательной области, поскольку это требуется интересами аксиоматики.
1. Пространство, диалектически созревшее до степени выражения, есть пространство, поставленное в соотношение со своим абсолютным инобытием. В общем случае оно — неэвклидовское, «неоднородное» пространство, в котором эвклидовское — только один из частных случаев.
Это неоднородное пространство никак нельзя осилить предыдущими аксиомами. Что нам давали аксиомы едино–раздельности («порядка», «сочетания» и пр.)? Они нам только впервые давали геометрическую фигуру, да и то не столько ее саму, сколько ее отвлеченную категорию. Результат аксиом едино–раздельности, как это формулировано в § 5–8.1, гласил нам только о фигурно–упорядоченной совокупности элементов, и больше ничего. Конечно, и в эвклидовой и во всякой неэвклидовой геометрии построение приводит к тем или иным фигурно–упорядоченным совокупностям. Однако по этой линии невозможно провести различие между эвклидовой и неэвклидовыми геометриями. Точно так же тут ничем не поможет и становление, т. е. принцип непрерывности. Все эти пространства одинаково непрерывны и прерывны, и совершенно не в этом их подлинное различие. Конгруэнтность стоит уже значительно ближе к характеристике разных пространств, но та конгруэнтность, которая выше формулирована у нас в § 64 как результат категории числового ставшего, все равно сюда не годится. Там имелась в виду конгруэнтность внутрифигурная, когда сравнивались две фигуры в пространстве и независимо от свойств того пространства обсуждались с точки зрения конгруэнтности. Здесь же, поскольку ставится вопрос о субстанции самого пространства, нам важна конгруэнтность фигур именно в зависимости от пространства.
Самое большое, что мы получили до сих пор от наших аксиом, это фигура как таковая, с той ее чисто фигурной же измеримостью, которая зависела или от ее внутреннего инобытия, или от ее внешнего, но от такого внешнего, которое положено пока только в виде голого принципа, без всякой реальной развернутости. Ясно, что выведенная нами геометрическая фигура все еще слишком «идеальна», хотя она уже значительно «реальнее» фигуры, о конгруэнтных свойствах которой ничего неизвестно, подобно тому как эта последняя «реальнее» голой категории фигуры. В настоящем же смысле и уже в окончательном смысле «реальной» фигура будет только тогда, когда она вместит в себя и все свое абсолютно–внешнее инобытие. Включивши в себя возможное инобытие, она уже не сможет больше ни в каком смысле изменяться.
Как же включить в геометрическую фигуру ее абсолютно–внешнее инобытие, чтобы она стала выразительней?
2. а) Чтобы решить этот вопрос, мы должны взять какую–нибудь фигуру и рассмотреть ее отношение к ее абсолютно–внешнему инобытию. Возьмем фигуру простейшую— прямую линию, потому что еще более простая «фигура», точка, по своему смыслу абсолютно само–тождественна решительно во всех фигурах и пространствах. Конечно, прямая и без всяких дальнейших добавлений уже содержит в себе свою соотнесенность со своим инобытием. Поскольку в прямой мы находили (§[55]) единство направления, мы тем самым уже, несомненно, ориентировали ее на фоне ее абсолютно–внешнего инобытия. Однако сейчас нам этого мало. Мы хотим как раз эту–то соотнесенность и рассматривать специально, полагая и утверждая ее в виде отдельной диалектической категории. Но для этого мало будет одной прямой. Кроме того, и в указанной соотнесенности нас интересует, собственно говоря, не сама она как таковая, а то, с чем прямая соотнесена, т.е. само пространство. По этой соотнесенности мы должны судить о пространстве.
Чтобы этого достигнуть, мы, очевидно, должны взять по крайней мере две таких прямых. Когда мы берем одну прямую, то ее соотнесенность с прочим пространством если как–нибудь и меняется, то этого заметить невозможно. Другое дело, когда мы имеем две фигуры, конгруэнтные одна другой. Тогда если в этом мы найдем какое–нибудь различие, то оно будет зависеть уже не от внутренних особенностей самой фигуры, но от окружающего ее пространства, а это как раз нам и важно.