Читаем Капля полностью

Как видите, стоков энергии много, и, очевидно, все «работающие», но скорость их действия и «поглощатель­ная способность», конечно же, различны. Совершенно яс­но, что капля не подпрыгнет, если изменение ее формы будет происходить медленно. В этом случае принципиаль­но возможный расход энергии на скачок не произойдет. И на борьбу с сопротивлением жидкости изменению ее формы тоже будет расходоваться мало энергии, потому что этот расход, как оказывается, тем больше, чем быстрее должно произойти изменение формы. При медленной сфероидизации капли выделяющаяся энергия была бы израсходована в основном на ее нагрев и нагрев окружаю­щего пространства. Увидеть, как капля подпрыгнет, мож­но лишь при условии, что преобразование ее формы будет происходить быстро. Если, присев на корточки, мы будем медленно распрямляться, прыжок не получится: чтобы подпрыгнуть, надо, быстро распрямляясь, оттолк­нуться от земли. Но что значит «быстро» применительно к капле, которая изменяет свою форму? Капле, чтобы под­прыгнуть, надо побороть силу тяжести, препятствующую прыжку.

На каплю в момент ее прыжка действуют две силы.

 

Итак, возникает задача, которую можно сформули­ровать следующим образом. Допустим, что вся энергия, которая выделяется в процессе сфероидизации капли, должна быть израсходована только на ее подпрыгивание. Пусть другие стоки энергии каким-то образом запрещены. Спрашивается, при какой длительности процесса преоб­разования формы капли в сферическую капля оторвется от твердой пластинки, на которой она лежит? Решить такую задачу просто. Это могут сделать восьмиклассники в на­чале учебного года, узнав, что кинетическая энергия тела равна половине произведения его массы на квадрат скоро-

 

При такой оценке времени кажется, что надежда на­блюдать подпрыгивающую каплю становится иллюзор­ной. Но, если каплю на подложке перевести в состояние невесомости или близкое к нему, произойдет то, к чему мы стремимся: потеряв вес, капля приобретает сферичес­кую форму и на нее перестает действовать сила тяжести, мешающая оторваться от пластинки, на которой она лежит. В состоянии невесомости величина g, которая стоит в зна менателе последней формулы, обращается в нуль, а это значит, что т становится рав­ным бесконечности, и капля подскочит даже при сколь угодно медленном преобразо­вании ее формы. При малей­шем изменении формы она оторвется от пластинки и с некоторой скоростью начнет двигаться от нее. Ситуация совершенно аналогична той, в которую попадают космо­навты во время полета, когда им приходится специально заботиться, чтобы случайное движение не вынудило их покинуть рабочее место.

 

Подпрыгнувшая в невесомости капля, колеблясь, свободно летит вверх

Вот теперь можно расска­зать о великолепном экспери­менте, который в 1970 г. по­ставили советские физики И. М. Кирко, Е. П. Добычин и В. И. Попов. Их экспери­мент состоял в следующем. Тяжелый контейнер, в кото­ром располагались прозрач­ный сосуд с двадцатиграм­мовой каплей ртути, залитой раствором соляной кислоты, и автоматически работающая кинокамера, сбрасывался с высоты 20 м. Во время свобод­ного полета, длившегося 2 сек., все содержимое контей­нера было практически в со­стоянии невесомости. Кинока­мера зафиксировала происхо­дящее в полете: ртутная ле­пешка, превращаясь в сферу,  подпрыгнула и полетела прочь от дна прозрачной кюветы со скоростью 8,7 см/сек. Это главное наблюдение, сделанное камерой. Проверим, как оно согласуется с величиной энер­гии, которая должна выделиться при сфероидизации кап­ли. Именно для этой проверки в начале очерка была наз­вана энергия, которая выделяется при сфероидизации ртутной капли весом 20 г. Получив скорость 8,7 см/сек., она унесет с собой энергию Wk = m 2 /2= 752 эрг,

т. е. большую часть всей выделяющейся энергии. Не ис­пользованными при прыжке остались 1060 — 752 =  308 эрг. Как показала кинокамера, основная часть этой энергии была израсходована на преодоление сопротивления вязкой ртути ее деформированию — движущаяся капля пульсировала, колебалась, и на это расходовалась энергия.

При опытах обнаружился еще один сток энергии — на этот раз энергии движущейся капли. Когда капля под­ходила к границе соляная кислота — воздух, грани­ца изгибалась и отражала от себя каплю, заставляя ее двигаться в обратном направлении. Часть энергии капли расходовалась на изгиб границы. Ртутная капля, подобно мячику, металась между дном кюветы и границей между соляной кислотой и воздухом. Именно поэтому свою статью, опубликованную в «Докладах АН СССР» (1970, т. 192, № 2), экспериментаторы назвали не совсем акаде­мично, но точно и выразительно: «Явление капиллярной игры в мяч в условиях невесомости».

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука