Читаем Капля полностью

А вот что написано о капле в «Толковом словаре» Да­ля. Слова «капля» нет, есть «капать», а «капля» — в качестве одного из множества производных слов. Они в словаре занимают места больше, чем находящиеся поблизости «капелла», «капитан», «капкан», «капрал» и «каприз», вместе взятые. «Капля» обросла множеством сентенций. Кто-то глубокомысленно заметил, что «океан начинается с капли», а кто-то — что «капля воды обладает всеми свой­ствами воды, но бури в ней заметить нельзя».

Много лет мечтал я написать книжку очерков о капле. Снимал кинофильмы, запоминал встречавшиеся стихи, в которых были строки о капле, сохранял короткие записи об историях, связанных с каплей. Готовился к книге, но не писал, что-то сковывало меня. И вот недавно встре­тилась мысль, которая придала мне решимость. Мысль о том, что писать книгу надо хотя бы для того, чтобы ос­вободиться от иллюзии, что можешь написать ее.

Итак, книжка очерков о капле. Не «Сталагмологии», а книжка очерков.

КАПЛЯ В НЕВЕСОМОСТИ

В условиях невесомости все выглядит так же, как и в условиях весомости, за исключением от­сутствия веса, в связи с чем в условиях неве­сомости все выглядит не так, как в условиях весомости.

Ответ на экзамене по физике

Опыт Плато

Жозеф Антуан Фердинанд Плато, профессор Гентского университета по кафедре физики и анатомии, в течение жизни занимался множеством различных проблем, кото­рые, судя по всему, считал значительно более важными, чем поставленный им опыт с невесомой каплей. Но история рассудила иначе и прочно соединила его имя именно с этим опытом. Опыт широко известный, классический, демонстрируемый почти во всех лекционных курсах по фи­зике. В прозрачный сосуд наливается водный раствор спирта, и затем туда с помощью пипетки вводится капля масла. Концентрацию раствора можно сделать такой, что­бы плотность раствора и масла была одинаковой. В этом случае капля масла, не растворяющаяся в спиртовом растворе, вне зависимости от ее объема, приобретет форму сферы и повиснет в растворе. Аналогичный опыт можно поставить, воспользовавшись соленой водой и кусочком жидкой эпоксидной смолы или анилина,— результат будет тот же.

Сферическая форма капли в опыте Плато объясняется тем, что вследствие равенства плотности вещества капли и среды капля оказывается в невесомости, и поэтому ее форма определяется только стремлением к уменьшению поверхностной энергии на границе капля — среда.

В последние годы в связи с развитием космонавтики возрос интерес к поведению жидкости в невесомости. Возникло научное понятие «гидродинамика невесомости». Плато, пожалуй, следует считать пионером этой науки. Он первый, оставаясь приверженным Земле, поставил жид­кость в условия невесомости, «отключив» тяготение для одной капли.

Истинная форма капли определяется суммой всех сил, которые на нее действуют, и поэтому задачи о форме капли в обычных условиях, как правило, очень сложны. Если капля лежит на твердой поверхности, то надо учесть и дей­ствие силы тяжести, которое будет каплю расплющивать, и действие собственного поверхностного натяжения, ко­торое будет каплю сжимать, и действие поверхностного натяжения на границе капля — твердая поверхность, которое тоже в какой-то степени деформирует каплю. В опыте Плато действует только одна из перечисленных сил — сила, обусловленная собственным поверхностным натяжением, и капля прини­мает форму сферы, т. е. фор­му, которая при данном объ­еме отличается минимальной поверхностью.

 

Капли анилина, взвешенные в воде, имеют сферическую форму вне зависимости от их размера

Последнее утверждение обычно повторяют как само собой разумеющееся. Между тем стоило бы убедиться в том, что шар действительно обла­дает минимальной поверх­ностью. Это можно сделать с помощью рассуждений, не­когда предложенных немец­ким геометром Штайнером.

Воспроизведем его рассуж­дения в виде двухэтапной последовательности.

Этап первый. Фигура, по­верхность которой минималь­на при данном объеме, не мо­жет иметь вогнутые участки, так как превращение этих участков в плоские приводит к уменьшению поверхности, которое сопровождается увеличением объема.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука