Читаем Камень ломает ножницы. Как перехитрить кого угодно: практическое руководство полностью

Раскладку Стеббинса запомнить просто, и в этом суть. Фокусник, видящий нижнюю карту снятой колоды, мгновенно вычисляет следующую… а она становится верхней картой вновь сложенной и выровненной колоды. При желании он может назвать эту карту, а также любую другую карту в колоде.

В большинстве случаев мы очень хорошо умеем обманывать сами себя. Поняв, что «легкая рука» – иллюзия, мы начинаем видеть ее примеры повсюду. Многие пользователи iPod жалуются, что функция воспроизведения в случайном порядке работает не так, как должна. Это не может быть случайным – только что плеер проиграл четыре песни Лил Уэйн подряд! Но такие серии должны встречаться. Дефект не в программе, а у нас в голове.

Расписание автобусов на оживленных улицах Манхэттена почти ничего не означает, потому что из-за плотного потока транспорта и многочисленных светофоров автобусы приходят практически в случайном порядке. Однако график движения совсем не выглядит случайным. Создается впечатление, что ты ждешь автобуса 20 минут, а затем сразу приходят два или три подряд.

Специалист по когнитивной психологии Стивен Пинкер сообщает об эксперименте. Добровольцы должны нажимать кнопку, услышав звуковой сигнал. Участники эксперимента знали, что сигналы будут поступать в случайном порядке. Они жаловались, что машина неисправна: «Сигналы приходят пачками. Вот так: бип-бип-бип-бип-бип… бип… бип-бип… бип-бип-бип-бип-бип». Они не понимали, как выглядит случайность, объясняет Пинкер.

Когда легкая рука проявляется в двух или трех пространственных измерениях, а не только в одном, временном, это называется иллюзией кластеризации. Во время воздушных налетов на Лондон ходили слухи, что немецкие бомбы не попадают в кварталы, где живут нацистские шпионы. Карты показывали группы попаданий в одни районы и ни одного попадания в другие. Британская разведка восприняла эти слухи достаточно серьезно, разделила карту Лондона на квадраты и тщательно следила, куда падают бомбы. В результате они пришли к выводу, что бомбы действительно падают случайно. Статистик Уильям Феллер заметил: «Нетренированному глазу случайность видится как регулярность или тенденция к образованию групп». Многие отказывались верить. Как спрашивал Чико Маркс [17]: «Ты веришь мне или своим глазам?»

На первый взгляд вера в легкую руку противоречит более известному «заблуждению игрока». 18 августа 1913 г. в казино Монте-Карло «черное» выпало 26 раз подряд. Примерно после 15-го раза об этом стало известно всем посетителям. Игроки побросали карты и игральные кости, и у стола с рулеткой собралась целая толпа. Большинство желали поставить на «красное». Они верили, что после стольких «черных» подряд вероятность того, что в следующий раз выпадет «красное», выше обычной. Когда это убеждение опровергалось – после того, как вслед за остановкой колеса в очередной раз выпадало «черное» – многие удваивали ставку, убежденные, что в следующий раз вероятность «красного» еще выше.

Заблуждение игрока – это вера, что случайный результат, не выпавший в прошлом, с большей вероятностью случится в ближайшем будущем. Это обоснованное заблуждение («я давно уже должен выиграть!» – думает каждый неудачник), но все-таки заблуждение, побуждающее неудачников продолжать игру, не учась на ошибках. Будь у любителей азартных игр хотя бы инстинкт самосохранения, как у крыс, преодолевающих лабиринт, они бы поняли: когда я играю, ничего хорошего не происходит. Вместо этого они продолжают делать ставки и в ответ на проигрыш могут даже поднимать их. К сожалению, колесо рулетки не может знать, что именно эти люди должны выиграть. Шансы остаются прежними.

Вполне возможно, что вы уже запутались. Создается впечатление, что я утверждаю: люди верят в продолжение победных серий… за исключением случаев, когда они верят в прямо противоположное. Ничего подобного. Заблуждение игрока и теория легкой руки – две стороны одной медали. И то, и другое – следствие «закона малых чисел».

Это полушутливое правило сформулировали в 1971 г. Амос Тверски и Дэниел Канеман. Оно гласит:

«Интуиция людей относительно случайной выборки, похоже, подчиняется закону малых чисел, гласящему, что закон больших чисел также применим и к малым».

Чтобы понять его смысл и оценить шутку, нужно знать, что такое «закон больших чисел». Это одна из главных формул вероятности. Когда я подбрасываю монету, то орел и решка не обязательно выпадут одинаковое число раз. Для этого потребуется очень длинный случайный процесс. Но если я бросаю монету большое количество раз, то пропорция орлов приближается к ожидаемой величине (50 процентов).

Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес