По крайней мере в одном случае показатели рентабельности Мэдоффа были раскрыты – для инвестиционного фонда-донора Fairfield Sentry. Основанный в 1990 г. Уолтером Ноэлом и Джеффри Такером, фонд выводил Мэдоффа на глобальный рынок, предлагая «алгоритмическую технологию» Мэдоффа богатым организациям во всем мире (минимальные инвестиции 100 тысяч долларов). Abu Dhabi Investment Authority, JPMorgan Chase, Banco Bilbao Vizcaya Argentaria (Испания), Nomura Holdings (Япония) и многие швейцарские банки – все они приобрели кусочек волшебства Мэдоффа через фонд Fairfield Sentry.
В первый месяц (декабрь 1990 г.) Fairfield Sentry объявил о рентабельности 2,77 процента. Месячные показатели рентабельности публиковались вплоть до октября 2008 г., когда она составляла небольшую отрицательную величину, 0,06 процента. К тому времени активы фонда достигли 7 миллиардов долларов и превысили десятую часть всех активов под управлением Мэдоффа. Доллар, вложенный в Fairfield Sentry в декабре 1990 г., должен был превратиться в 6,04 доллара к октябрю 2008 г. – если бы вы смогли его забрать. Это означает среднюю рентабельность 10 процентов в год.
Еще более удивительным выглядит стабильность заявленной рентабельности. На графике показано, сколько стоил доллар, инвестированный в Fairfield Sentry, по сравнению с долларом, инвестированным в компанию из группы S & P 500. Рентабельность Fairfield Sentry оказалась стабильнее не только биржевого индекса, но и облигаций американского казначейства.
Мэдофф и S & P 500
Мэдофф знал о волатильности все. Но когда дело доходило до сочинения фиктивных чисел, он опирался на не отличающиеся рациональностью инстинкты, присущие всем людям. Очевидно, Мэдофф чувствовал потребность поддерживать месячную рентабельность близкой к объявленной им же средней. Только один раз (в январе и феврале 2003 г.) у него встречаются две отрицательные рентабельности подряд.
Взглянув на график, вы можете сказать, что рентабельность
Все пошло наперекосяк в августе 2008 г. Компания JPMorgan Chase изъяла из фонда Fairfield Sentry 250 миллионов долларов. Официальная версия гласила, что они «были обеспокоены недостатком прозрачности». Тем временем Мэдофф и Fairfield Sentry создавали новый фонд. Он должен был увеличить количество заемных средств, чтобы достичь рентабельности 16 процентов. Fairfield Sentry якобы предупреждал инвесторов, что всякий, кто осмелится забрать деньги, и всякий, кто сделает глупость и не инвестирует в новый фонд, понесет суровое наказание: его лишат возможности вкладывать деньги в любой из будущих фондов Мэдоффа.
Мэдофф был арестован 11 декабря 2008 г.
Месячная рентабельность фонда Fairfield Sentry указывалась с точностью до сотых долей процента. Это означает, что в нашем распоряжении всего две или три значащие цифры. Округление уничтожает информацию (в данном случае это означает, что Мэдоффу не было нужды придумывать эту информацию). Несмотря на это, можно заметить, что месячная рентабельность Мэдоффа выглядит необычно.
Давайте начнем с первых цифр – теста, в котором закон Бенфорда проявляется нагляднее всего. Нигрини рекомендует пропускать отрицательные величины (или анализировать их отдельно), поскольку при фальсификации стоит задача минимизировать убытки. Я также исключил несколько случаев, когда числа оказывались меньше двух значащих цифр. Остается 190 величин, двух– и трехзначные положительные числа. Столбики гистограммы отображают реальное распределение цифр, а сплошная линия – идеальное распределение Бенфорда.
Первые цифры: рентабельность Fairfield Sentry
Сорок процентов показателей рентабельности начинаются с цифры 1. Это гораздо больше 30 процентов, предсказываемых законом Бенфорда. Цифры от 2 до 5 представлены недостаточно, а цифры 7 и 8 с избытком. Эти различия статистически значимы.
Мэдофф заявлял о рентабельности приблизительно 11 процентов в год. Значит, месячная рентабельность должна быть близка к 1 проценту. Эти числа были необыкновенно стабильны и никогда слишком сильно не отклонялись от среднего значения. Если принять все за чистую монету, то следует ожидать непропорциональной доли месяцев с рентабельностью в диапазоне от 0,70 до 1,99 процента. Это создаст избыток первых цифр 7, 8, 9 и 1, а также недостаток всех остальных.
Именно такую картину мы и наблюдаем – за одним-единственным исключением. Первая цифра 9 почти точно соответствует распределению Бенфорда. Это контрастирует с повышенной по сравнению с законом Бенфорда частотой появления последних цифр.