Заспорили Стороны угла, никак между собой не поладят.
— Я, со своей стороны, считаю… — говорит одна Сторона.
— А я считаю, со своей стороны… — возражает ей другая.
Ничего не поделаешь: хоть у них и общий угол зрения, но смотрят-то они на мир с разных сторон!
Проходила как-то между ними Биссектриса. Обрадовались Стороны: вот кто будет их посредником! Спрашивают Биссектрису:
— А вы как думаете?
— А ваше мнение каково?
Стоит посредник посрединке, колеблется.
— Ну скажите же, скажите! — тормошат Биссектрису со всех сторон.
— Я думаю, вы совершенно правы, — наконец произносит Биссектриса, кивая в правую сторону.
— Ах, какая вы умница! — восхищается правая Сторона. — Как вы сразу все поняли!
А Биссектриса между тем поворачивается к левой Стороне:
— Ваша правда, я тоже всегда так думала.
Левая Сторона в восторге:
— Вот что значит Биссектриса! Сразу сообразила, что к чему!
Стоит Биссектриса и знай раскланивается: в одну сторону кивнет — мол, правильно, в другую сторону кивнет — мол, совершенно верно. Мнение Биссектрисы ценится очень высоко, поскольку оно устраивает обе стороны.
ОСТРЫЙ УГОЛ
От этого Угла никому в учебнике не было покоя. Ох, и доставалось же от него геометрическим фигурам! Треугольнику доставалось за угловатость. Окружности — за обтекаемость, Квадрату — за отсутствие разносторонности.
Как всегда бывает, тут же находились охотники, которые подхватывали остроты Угла, и — начиналась критика. Эта критика из-за Угла приняла такие размеры, что к нему даже стали относиться с уважением.
Так пришла к Углу слава, а с ней и все остальное. Угол раздался, стал солидней, внушительней и — куда девалась его былая острота! Теперь уже никак не поймешь, отчего он отупел — от градусов или от всего остального.
УРАВНЕНИЕ С ОДНИМ НЕИЗВЕСТНЫМ
Разные числа — большие и малые, целые и дробные, положительные и отрицательные — впервые встретились в уравнении.
Они любезно, хотя и сдержанно, обменялись приветствиями, а затем стали знакомиться.
— Четверка.
— Очень приятно. Двойка.
— Тройка.
— И я Тройка. Значит, тезки!
— Одна Четвертая…
— Две Четвертых…
— Три Четвертых…
Очень быстро все перезнакомились. Только одно число не назвало себя.
— А вас как зовут? — стали спрашивать у него числа.
— Не могу сказать! — важно ответило это число. — У меня есть причины…
— Ах, подумайте, какие загадки! — затараторила Одна Девятая. — Как можно жить в обществе и совсем не считаться с его мнением!
— Спокойно, спокойно, — вмешался Знак Равенства, самый справедливый знак во всем задачнике. — Все выяснится в свое время. А пока пусть это число остается неизвестным. Мы назовем его Иксом. Что поделаешь, будет у нас уравнение с одним неизвестным.
Все числа согласились со Знаком Равенства, но теперь они вели себя еще сдержанней, чем даже во время знакомства. Кто его знает, что за величина этот Икс? Здесь нужно быть осторожным.
Некоторые попытались заискивать перед. Иксом, по он так важно себя держал, что даже у дробей отпала охота добиваться его расположения.
— Ну нет, — прошептала Двойка Четверке. — Ты как хочешь, а я перебираюсь в другую сторону уравнения. Пусть я буду там с отрицательным знаком, но зато не буду видеть этой персоны.
— И я тоже, — сказала Четверка и вслед за Двойкой перебралась в другую сторону уравнения. За ними последовали две тезки — Тройки, а потом и дроби — Одна Четвертая, Две Четвертых, Три Четвертых — и все остальные числа.
Икс остался один. Впрочем, это его не встревожило. Он решил, что числа просто не хотят его стеснять.
Но числа решили по-другому. Они сложились, перемножились и поделились, а когда все необходимые действия были произведены, Икс ни для кого уже не был загадкой. Он оказался мнимой величиной, такие тоже встречаются в математике.
То-то он так мнил о себе, этот Икс!
ТАБЛИЦА УМНОЖЕНИЯ
На последней странице тетради выстроилась таблица умножения. Строгие колонны чисел стоят, сомкнув ряды, и готовы по первому знаку продемонстрировать свою силу и мощь любому ученику — от первого до десятого класса.
По первому знаку — это понятно. Ведь командует парадом Знак Равенства.
— Равняйсь! — командует Знак Равенства.
И числа равняются.
Дважды два равняется четырем.
Трижды пять равняется пятнадцати.
Семью восемь равняется пятидесяти шести.
Вот какая здесь во всем точность!
В таблице умножения суровая дисциплина, но числа подчиняются ей легко и охотно. Разве можно не подчиниться дисциплине, которая существует под знаком равенства?
ТРЕУГОЛЬНИК
Задумал Угол треугольником стать. Нашел подходящую Прямую линию, взял ее с двух сторон за две точки — и вот вам, пожалуйста, чем не треугольник?
Но Прямая оказалась строгой линией. Сдерживает она угол, ограничивает. Теперь ему не та свобода, что прежде.
А вокруг, как назло, ломаные линии вертятся, выламываются:
— Ну как ты, Угол, со своей Прямой? Ладите?
Что им ответишь? Молчит Угол. Молчит, а сам думает: «Зря я такую прямую линию взял. Ломаные куда удобней!»
За этой мыслью пришла и другая: «А вообще-то, чем я рискую? Можно такую ломаную найти, что она с моей прямой и не пересечется».