Читаем Как же называется эта книга? полностью

Рассмотрим сначала мое доказательство (звучит гордо, не так ли?) существования единорога. Насколько я могу судить, ошибка в приведенных мною рассуждениях состоит в следующем. Когда я привожу определение существующего единорога («под существующим единорогом я, разумеется, понимаю единорога, который существует»), то имею в виду не какого-то вполне определенного существующего единорога, а некоторого существующего единорога, или, если угодно, существующего единорога вообще. Это подразумеваемое слово «некоторый» допускает двойственное толкование: иногда оно может означать «любой, каждый, всякий», иногда же означает «по крайней мере один». Например, если я высказываю утверждение «у совы большие глаза», то оно означает, что у сов большие глаза, что у всех сов большие глаза или что у каждой совы большие глаза. Но если я высказываю утверждение «в этом доме сова», то оно отнюдь не означает, что в этом доме собрались все совы. Я имею в виду лишь, что в этом доме находится по крайней мере одна сова. Именно поэтому, когда я говорю: «Существующий единорог существует», то не ясно, что именно имеется в виду: что все существующие единороги существуют или что по крайней мере один существующий единорог существует. Если я имею в виду первое, то высказанное мною утверждения истинно: все существующие единороги, разумеется, существуют. Как бы мог уже существующий единорог не существовать? Но это не означает, что высказанное мною утверждение истинно во втором смысле, то есть что по крайней мере один единорог непременно должен существовать.

Аналогичное замечание можно сделать и по поводу доказательства Декарта. Из него по сути дела следует, что все боги существуют, то есть всякий X, удовлетворяющий определению бога по Декарту, должен обладать свойством существования. Но это отнюдь не означает, что по крайней мере один бог непременно существует.

<p>242. Доказательство Эйлера</p>

О поездке Дидро в Россию по приглашению Екатерины II рассказывают следующий анекдот. Дидро был атеистом и не скрывал своих убеждений. Императрица находила его высказывания забавными, но один из ее вельмож счел, что они могут вызвать нежелательное брожение умов, и посоветовал пресечь вольнодумные речи Дидро. Против энциклопедиста был составлен небольшой заговор, к участию в котором был приглашен знаменитый математик Эйлер, человек глубоко религиозный. Эйлер объявил, что ему удалось найти доказательство существования бога, которое он охотно изложит Дидро в присутствии всего императорского двора. Дидро согласился на диспут. Эйлер, пользуясь тем, что Дидро совершенно не знал математика, встал и, глядя на своего оппонента, замогильным голосом произнес: «A в квадрате минус B в квадрате равно A минус B, умноженному на A плюс B. Следовательно, бог существует. Вы согласны?» Раздался общий смех, и Дидро совершенно растерялся. Тут же он испросил у императрицы разрешение вернуться на родину и отбыл во Францию.

<p>243</p>

Доказательство того, что вы либо непоследовательны, либо самонадеянны.

Это доказательство я придумал лет тридцать назад и рассказывал его многим студентам и коллегам-математикам. Несколько же лет назад кто-то сообщил мне, что видел то же доказательство в каком- то философском журнале, но не может вспомнить автора. Все же я хочу познакомить читателя с этим доказательством, кому бы оно ни принадлежало.

Человеческий мозг — машина конечная, поэтому вы можете верить в истинность лишь конечного числа утверждений. Обозначим их p1, p2…, pn, где n — число утверждений, в истинность которых вы верите. Итак, вы верите в то, что каждое из утверждений p1, p2…, pn истинно. Если вы не слишком самонадеянны, то знаете, что не все, во что вы верите, истинно. Значит, если вы не самонадеянны, то знаете, что по крайней мере одно из утверждений p1, p2…, pn ложно. Вы же верите в истинность каждого утверждения. Следовательно, вы непоследовательны.

Примечание. Где ошибка в этих рассуждениях? Я считаю, что никакой ошибки здесь нет. По моему глубокому

убеждению, разумно скромный человек должен быть непоследовательным.

<p>Б. Новые дурацкие штучки</p><p>244. Расселл и папа римский</p>

Один философ испытал сильнейшее потрясение, узнав от Бертрана Расселла, что из ложного утверждения следует любое утверждение. Он спросил: «Вы всерьез считаете, что из утверждения „два плюс два — пять“ следует, что вы папа римский?» Расселл ответил утвердительно. «И вы можете доказать это?» — продолжал сомневаться философ. «Конечно!» — последовал уверенный ответ, и Расселл тотчас же предложил такое доказательство.

1) Предположим, что 2 + 2 = 5.

2) Вычтем из обеих частей по 2: 2 = 3.

3) Переставим правую и левую части: 3 = 2.

4) Вычтем из обеих частей по 1: 2 = 1.

Папа римский и я — нас двое. Так как 2 = 1, то папа римский и я — одно лицо. Следовательно, я — папа римский.

<p>245. Что лучше?</p>
Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Агрессия
Агрессия

Конрад Лоренц (1903-1989) — выдающийся австрийский учёный, лауреат Нобелевской премии, один из основоположников этологии, науки о поведении животных.В данной книге автор прослеживает очень интересные аналогии в поведении различных видов позвоночных и вида Homo sapiens, именно поэтому книга публикуется в серии «Библиотека зарубежной психологии».Утверждая, что агрессивность является врождённым, инстинктивно обусловленным свойством всех высших животных — и доказывая это на множестве убедительных примеров, — автор подводит к выводу;«Есть веские основания считать внутривидовую агрессию наиболее серьёзной опасностью, какая грозит человечеству в современных условиях культурноисторического и технического развития.»На русском языке публиковались книги К. Лоренца: «Кольцо царя Соломона», «Человек находит друга», «Год серого гуся».

Вячеслав Владимирович Шалыгин , Конрад Захариас Лоренц , Конрад Лоренц , Маргарита Епатко

Фантастика / Самиздат, сетевая литература / Научная литература / Ужасы и мистика / Прочая научная литература / Образование и наука / Ужасы
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука