Читаем Как же называется эта книга? полностью

Существует, как мне кажется, довольно точное определение пьяного математика: пьяным называется математик, утверждающий, будто он может доказать что угодно!

В платоновском диалоге «Евтидем» Сократ, расхваливая непостижимое умение братьев-софистов Евтидема и Дионисидора вести спор, говорит: «Столь велико их искусство, что они могут опровергнуть любое утверждение, будь оно истинно или ложно». Далее Сократ описывает в диалоге, как Дионисидор доказывает одному из собеседников по имени Ктесипп, что отец Ктесиппа – пес.

Д и о н и с и д о р. Скажи, есть ли у тебя пес?

К т е с и п п. Да, и, должен признаться, препаршивый.

Д и о н и с и д о р. А нет ли у него щенков?

К т е с и п п. Как не быть! И все они похожи на него.

Д и о н и с и д о р. И твой пес – их отец?

К т е с и п п. Да, я видел своими глазами, как он покрыл мать щенков.

Д и о н и с и д о р. И этот пес твой?

К т е с и п п. Вне всякого сомнения.

Д и о н и с и д о р. Итак, он отец и он твой. Следовательно, он твой отец, а щенки доводятся тебе братьями.

Вдохновленный примером великих софистов, я докажу вам много странного и удивительного.

А. ДОКАЗАТЕЛЬСТВА ВСЯКОЙ ВСЯЧИНЫ238. Доказательство того, что либо Траляля, либо Труляля существует

Из этого доказательства не следует, что Траляля и Труляля существуют оба. Я докажу лишь, что по крайней мере один из них существует. Кто именно из двух братцев существует, останется для нас неизвестным.

Представьте себе, что перед нами лист бумаги с тремя утверждениями:

1) Траляля не существует.

2) Труляля не существует.

3) По крайней мере одно из утверждений на этом листе ложно.

Рассмотрим утверждение (3). Если оно ложно, то неверно, что по крайней мере одно из трех утверждений ложно. Значит, все три утверждения истинны. В частности, истинно утверждение (3), и мы пришли бы к противоречию. Следовательно, утверждение (3) не может быть ложно. Значит, оно должно быть истинно. Отсюда мы заключаем, что по крайней мере одно из трех утверждений в действительности ложно. Но утверждение (3) не может быть ложным. Следовательно, ложно либо утверждение (1), либо утверждение (2). Если ложно утверждение (1), то существует Траляля. Если ложно утверждение (2), то существует Труляля. Следовательно, либо Траляля, либо Труляля существует.

Однажды я выступал с лекцией о своих логических задачах-головоломках в студенческом математическом клубе. Собравшимся меня представил логик Мелвин Фиттинг (мой бывший студент, который хорошо знал меня). Его краткая речь великолепно отразила дух этой книги. Он сказал: «Я имею честь представить вам профессора Смаллиана, который докажет вам, что либо он не существует, либо вы не существуете, но кто именно не существует, вам неизвестно».

239. Доказательство того, что Трулюлю существует

Представьте, что перед нами лист бумаги с двумя утверждениями:

1) Трулюлю существует.

2) Оба утверждения на этом листе ложны.

Рассмотрим сначала утверждение (1). Если бы оно было истинно, то оба утверждения были бы ложны. В частности, было бы ложно утверждение (2), и мы пришли бы к противоречию. Следовательно, утверждение (2) ложно. Значит, неверно, что оба утверждения ложны, поэтому по крайней мере одно из них истинно. Так как утверждение (2) не истинно, то истинно должно быть утверждение (1). Следовательно, Трулюлю существует.

240. Существует ли Дед Мороз?

Должен сказать, что существование Деда Мороза многие подвергают сомнению. Несмотря на скептицизм, столь распространенный в наше время, я приведу три доказательства, не оставляющих ни малейшего сомнения в том, что Дед Мороз существует и должен существовать. Все три доказательства являются вариантами метода, заимствованного мною у Дж. Баркли Россера. Этот метод позволяет доказать что угодно.

Первое доказательство. Изложим это доказательство в форме диалога.

П е р в ы й л о г и к. Если не ошибаюсь, Дед Мороз существует.

В т о р о й л о г и к. Разумеется, Дед Мороз существует, если вы не ошибаетесь.

П е р в ы й л о г и к. Следовательно, мое утверждение истинно.

В т о р о й л о г и к. Разумеется!

П е р в ы й л о г и к. Итак, я не ошибся, а вы согласились с тем, что если я не ошибаюсь, то Дед Мороз существует. Следовательно, Дед Мороз существует.

Второе доказательство. Приведенное выше доказательство представляет собой не что иное, как беллетризованный вариант следующего доказательства, предложенного Дж. Баркли Россером:

Если это утверждение истинно, то Дед Мороз существует.

В основе этого доказательства лежит уже знакомая нам идея. С ней мы встречались, когда доказывали, что если обитатель острова рыцарей и лжецов высказывает утверждение «если я рыцарь, то то-то и то-то», то он должен быть рыцарем, а «то-то и то-то» должно быть истинно.

Перейти на страницу:

Все книги серии Просто о необычном и сложном

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука