Читаем Как сдвинуть гору Фудзи полностью

А что если вам нужно выплатить 64 доллара? Сначала вы отдаете седьмую коробку, в которой 37 долларов. Затем вычитаете 37 долларов из 64 долларов, и остается 27 долларов. Эту сумму вы можете выплатить, используя первые шесть коробок, суммы в которых соответствуют степеням числа 2. В данном конкретном случае вы отдаете коробки, сумма денег в которых равна 37, 16, 8, 2 и 1 доллару. Аналогичный принцип можно использовать для любой суммы в пределах 100 долларов.

Когда интервьюер спрашивает вас об «ограничениях» для b и n, он имеет в виду: «Каким образом вы можете определить, будет ли данный план работать для конкретных значений b и n?». Например, очевидно, что, если у вас есть миллион долларовых банкнот и всего одна коробка, такой план работать не будет. У вас недостаточно коробок для такой суммы. Обратите внимание, что обратная проблема вас не должна беспокоить: если у вас мало долларов и много коробок — все в порядке.

Вам нужно найти общую формулу, которая связывает b и n. Набросайте таблицу, показывающую, какую сумму вы можете выплатить, если у вас есть данное количество коробок.

b  n

1 — до 1 доллара

2 — до 2 + 1 = 3 долларов

3 — до 4 + 2 + 1 = 7 долларов

4 — до 8 + 4 + 2 + 1 = 15 долларов.

Это приемлемый ответ. Он будет выглядеть немного более изящно, если вы добавите по 1 к правой и левой части: n + 1 < 2b . Это, аналогично утверждению, что n должно быть меньше или равно 2b.

Как бы ни отражала эта загадка «цифровой дух нашего времени», она использовалась в той или иной форме еще со времен Ренессанса. Обычно ее называют задачей на взвешивание Баше, потому что она была упомянута в книге Клода Каспара Баше Problemes plaisans et dekctables (фр. «Приятные и восхитительные задачи»), опубликованной в 1612 году.[144] Баше спрашивал, какое минимальное количество гирь необходимо для того, чтобы уравновесить любой вес от 1 до 40 фунтов. Еще более ранняя версия этой задачи, тоже о взвешивании, была опубликована в трактате об измерениях Николо Тартальи в Венеции в 1556 году. Ответ, конечно, — 1, 2, 4, 8, 16 и 32 фунта. Для ренессансных гуманистов необходимость использования степеней числа 2 была гораздо менее очевидной, чем для интервьюеров из Microsoft, привычных к использованию двоичной системы счисления.

У вас баночка, в которой драже трех цветов: красного, зеленого и синего…

Четыре. Если вы достаете только три драже — они могут все оказаться разных цветов. Если вы берете четыре драже — по крайней мере два из них обязательно будут одинакового цвета.

Это вариация Microsoft на тему более старой задачи о том, сколько носков вам нужно достать из ящика комода в темноте, чтобы быть уверенными в том, что у вас будет пара, подходящая по цвету. В компании Bankers Trust, например, спрашивают именно о носках. Если носки могут быть двух цветов, то ответ, очевидно, три.

У вас три корзины с фруктами…

Представьте, что вы взяли какой-то фрукт из корзины с надписью «Яблоки». Какую информацию это вам дает? Только один бит информации, который сообщает вам, яблоко это или апельсин. Допустим, это яблоко. Корзина, из которой вы его только что достали с названием «Яблоки», не может быть на самом деле корзиной, где только яблоки. Если уж вы нашли там яблоко, это значит, что в данной корзине должны быть перемешаны яблоки с апельсинами. Прекрасно. Тогда у нас остаются две корзины. На одной из них надпись «Апельсины», а на другой — «Яблоки и апельсины». В корзине «Апельсины» не может быть апельсинов (потому что все ярлыки с названиями ложные), это не может быть и смесь яблок с апельсинами (мы ведь уже знаем, что это корзина с ярлыком «Яблоки», из которой мы достали яблоко). Таким образом, в корзине с ярлыком «Апельсины» должны быть только яблоки, и тогда в корзине с ярлыком «Яблоки и апельсины», очевидно, одни апельсины.

Можно ли считать, что мы нашли решение? Нет. Мы сделали оптимистичное предположение о том, что достанем яблоко из корзины с названием «Яблоки», Это сразу позволяет прийти к выводу, что в данной корзине смесь апельсинов и яблок. Но вы также могли достать апельсин из корзины с надписью «Яблоки». В данном случае невозможно установить, что в этой корзине с надписью «Яблоки» только апельсины или смесь яблок и апельсинов.

Вам нужно быть уверенным в том, что фрукт, который вы достали из корзины, даст вам понять, что в этой корзине. Единственный способ добиться этого— взять фрукт из корзины, на которой ярлык «Яблоки и апельсины». Поскольку все ярлыки неверные, там должны быть фрукты только одного типа. И, достав фрукт, вы знаете, какого именно.

Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес