С темной материей ситуация несколько иная. Во многих лабораториях ведутся эксперименты по поиску темной материи. Однако существует возможность, что темная материя принципиально не может быть обнаружена в таких экспериментах. В этом случае физики будут вынуждены полагаться исключительно на инструментарий и методы астрономии, а также результаты астрономических наблюдений. Будет невозможно проведение эксперимента. Вдобавок даже с наблюдениями есть проблемы. Мы можем наблюдать множество галактик, но всего одну Вселенную. Для астрономических данных мы имеем повторяемость и репрезентативность, возможность применения статистических методов. Но не в космологии.
Можно провести такую аналогию. Каждый раз, когда физики обнаруживали на своем пути забор, скрывающий неизвестное, они находили способы его проломить, перелезть через него или в крайнем случае проковырять в нем дырочку. Возможно, забор, возникший на этот раз, окажется куда выше и прочнее, и узнать что-то о том, что находится за ним, физикам удастся разве что по наблюдениям отклонений полета птиц, пролетающих в вышине. Конечно, ситуация может оказаться не столь печальной, если частицы темной материи удастся зафиксировать в наземных, точнее подземных, экспериментах.
Вернемся к космологии. Наука не стоит на месте, и сейчас под термином «стандартная космологическая модель» мы понимаем уже другую теорию. Она сочетает отдельные элементы теории Гамова и неизвестные в те времена новые понятия, такие как «темная энергия» и «темная материя». Современная стандартная космологическая модель называется еще ΛCDM-моделью. Как мы уже говорили в разделе 2.8, буква Λ (лямбда) обозначает космологическую постоянную, а CDM – это сокращение от английских слов «cold dark matter» – «холодная темная материя». Из этой главы вы узнаете, почему материя темная и холодная, хотя, забегая вперед, можно сказать, что она холодная в том смысле, что скорости составляющих ее частиц существенно меньше скорости света.
Перейдем от философии к сухим фактам. По данным нескольких независимых источников (они будут описаны дальше в этой главе), мы получаем следующее процентное распределение плотности содержимого Вселенной. Больше всего во Вселенной темной энергии – 69,11 ± 0,62 %, затем идет темная материя – 25,89 ± 0,57 %, затем – обычная барионная материя – 4,86 ± 0,10 %. На долю излучения и нейтрино остается менее 0,1 %. Это соотношение показано на рис. 4.1.
Кроме того, полная плотность нашей Вселенной близка к критической плотности, равной 9,31×10–27 кг/м3, что соответствует плотности энергии 1 эрг на 100 м3. Отклонение полной плотности от критической составляет
Далее мы подробнее расскажем, на основании чего были сделаны выводы о том, что в картину мироздания необходимо добавить темную материю и темную энергию. И начнем с темной материи, поскольку о ней известно все-таки немного больше, чем о темной энергии.
4.2. Свидетельства существования темной материи
Пора наконец объяснить, что понимается под термином «темная материя». Начнем с того, что перечислим основные свойства темной материи, известные в настоящее время:
• темная материя взаимодействует с обычной гравитационно, т. е. притягивает ее;
• возможно, она участвует также в слабом взаимодействии с обычной материей, но это лишь предположение;
• она не участвует в электромагнитном взаимодействии, поэтому не обладает зарядом, не способна поляризоваться, не взаимодействует с электромагнитными полями и прозрачна для света и радиоволн, что означает, что она невидима;
• она не участвует в сильном взаимодействии, поэтому не накапливается в атомных ядрах;
• темной материи во Вселенной в пять раз больше обычной;
• все галактики окружены гало из темной материи;
• скорость темной материи намного меньше скорости света. Такую темную материю называют холодной;
• мы не знаем, что это такое, но уверены, что она не состоит из барионов, образующих обычную (барионную) материю.
4.2.1. Вириальная масса