Замѣчательно мѣсто у Магницкаго, въ которомъ онъ трактуетъ объ умноженіи простыхъ дробей. Здѣсь явственно вылилась вся нетребовательность по отношенію ко всякимъ выводамъ и объясненіямъ. Достаточно сообщить правило, а кромѣ него что же еще надо? такъ, навѣрное, думаетъ Магницкій, и мы не можемъ отказать себѣ въ томъ, чтобы не привести отрывка изъ его ариѳметики. Стр. 54
«Мултипликаціо или умноженіе въ доляхъ. Что въ семъ предѣленіи достоитъ вѣдати. Впервыхъ подобаетъ вѣдати яко во умноженіи нѣсть потреба да сравняеши доли къ единакому знаменателю: но яковы доли дадутся, таковы и умножати числители чрезъ чиелители, и знаменатели чрезъ знаменатели, якоже ⅜ чрезъ ¼. 3 чрезъ 1 будетъ 3, а 8 чрезъ 4, будетъ 32, и еже отъ числителей произыдетъ напиши надъ чертою, а отъ знаменателей произведеное напиши подъ чертою и будетъ 3/32».
Итакъ, въ ариѳметикѣ дается только правило, безъ вывода, зато послѣ правила идетъ цѣлый рядъ примѣровъ, всего 60 номеровъ, съ отвѣтами, и предлагается заняться продѣлываніемъ этихъ примѣровъ, чтобы, такъ сказать, набить руку въ этомъ правилѣ.
Преемники Магницкаго, т.-е. составители русскихъ учебниковъ XVIII и даже ХІХ в., не оказались счастливѣе его въ этомъ случаѣ. Они тоже или не даютъ никакихъ объясненій умноженія дробей, или даютъ объясненія спутанныя и трудныя. Такъ, въ ариѳметикѣ Адодурова (1740 г.) про умноженіе дробей объясняется на 29 страницахъ, при чемъ объясненіе дано очень растянутое, многословное и малоубѣдительное. У Румовскаго (1760 г.) передъ дробями расположены пропорціи, и умноженіе дробей выводится изъ общаго свойства пропорцій, именно, что произведеніе крайнихъ членовъ равно произведенію среднихъ членовъ. И сами пропорціи являются для учениковъ темнымъ мѣстомъ, а ужъ про выводъ изъ нихъ и говорить нечего, особенно когда онѣ идутъ на буквахъ, какъ это видимъ у Румовскаго. Порядочное изложеніе встрѣчаемъ мы у Загорскаго (1806 г.), но уже у Павла Цвѣткова (1834 г.) опять тянется старая пѣсня. «Какъ множится дробь на дробь?» спрашиваетъ онъ, и отвѣчаетъ:
«При умноженіи дробей на дроби надлежитъ множить числітелей на числителей, а знаменателей на знаменателей».
Этимъ заканчивается § 34, и авторъ уже болѣе не желаетъ возвращаться къ подобному скучному вопросу, къ которому, вдобавокъ, никакъ еще не придумать подходящаго объясненія. И это въ то время, когда Цвѣтковъ для болѣе легкаго вопроса, для умноженія дроби на цѣлое, находитъ нужнымъ и возможнымъ дать толковое объясненіе.
Да, умноженіе на дробь и въ старину, и еще теперь является однимъ изъ самыхъ больныхъ мѣстъ начальной ариѳметики.